Collective behavior in plasma
So far, we have considered the motion of a particle due to Lorentz force in
the fields prescribed by a driver.
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This “single particle motion” treatment will not be valid when many particles
are considered because the impact of charge density and current density of
these charges will become significant and can no longer be ignored.

Second, keeping track of individual particle motions and their effects on the
fields around them is not practical. (Typical plasma contains to'* 1e*>
particles; the fastest computers can follow 10'®-1e)

We will therefore have to come up with a new formalism to account for the
behavior of many particles in electric and magnetic fields. In the next few
lectures we develop the equations that govern the collective behaviors in
plasma, which form the foundation of much of plasma physics.

We start from the fact that for practical purposes, we can consider particles

point-like objects. The particle’s properties then can be described in terms of
delta functions:
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The total charge density for a collection of particles is given as the sum of all



charge densities:
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Phase Space
A highly advantageous structure for the study of plasma is to take advantage
of the concept of the phase space.

In real space, we consider the impact of forces on particles and then follow
them in the space. In this case, position and velocity for a particle are both
functions of time only:
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In the phase space, we consider the impact of forces on particles of various
velocities at a point in space. In this treatment, rather than following particles,
we look at the variation of properties at a certain point. Therefore, velocity
becomes an independent variable, as particles flowing in and out of a
position in space may have a variety of velocities, and the forces on these
particles will depend on this variable too:
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We derive an equation for the phase space density “F” using the continuity
equation in the real space “n” as an aspiration. One can think of continuity

equation as a conservation law for the number of particles:
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So far everything appears trivial and nothing more than definition. We are
interested in an equation for “F” and we can get that by using the properties
of delta function:
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This allows us to extract the acceleration and velocity functions from eqgn 1:
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So, the conservation of particles/continuity equation can be written as
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This is called the Klimontovich equation. For the phase space then, the total
time derivative following the trajectory of a particle is given by
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Note that the implication of the total derivative in time being zero is that there

is no trajectory crossing in phase space. This is because

1. At the trajectory crossing, the two particles are at the same position, with
the same velocity, experiencing the same force, which means that their
trajectory would merge. But Newton’s equations allow one to follow
trajectory backwards as well as forwards in time, which means that
running time backwards, it doesn’t make physical sense for the trajectory
of these two particles to “branch out” at t2. Therefore, the two particles
will have the same trajectory for all time, meaning that trajectory crossing
is not possible.

2. Mathematically is two trajectories cross, then the value of F at that point
will increase to
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This implies that the “fluid” is incompressible for point-like particles.

At this point, although we have introduced the new concept of phase space,
conceptually everything is still the same, except that the forms are different:
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In either case, calculating the trajectory of each particle is still required and
this is not practical. To get a practical equation, we make the approximation
where the exact function “F” (with all the delta functions) is replaced with a
smooth function “f’. There are several ways to view this transition, including
the statical mechanical process of “ensemble averaging”. This process is
detailed in Warren’s notes on pages 72(a)-73(b). | have included those pages
in the appendix to these notes.

My preferred way of viewing it is that “f” is a “zoomed out” version of “F”. So
a “single point” or “pixel” of function “f’ may include several particles.
Practically, this is like creating a histogram of “F” for reasonable intervals:
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If this process seems confusing, it is very instructive to reflect on how one
would create a histogram for a quantity like grades or heights of people in a
group and why those are useful concepts.

Now, the question is whether a version of Klimontovich equation also applies
to smooth function, “f’? Physically, the phase density “f’ is impacted by all
the same processes that effect the change in “F” (i.e. flux of particles from
elsewhere in position and velocity space), except that now many particles
can inhabit the same “point” in the phase space for “f’. Therefore, there is an
additional process that changes the phase space density “f’, and that comes
from the collision of particles that inhabit the same point:
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So, the Vlasov fluid, “f’ is also an incompressible fluid. This equation is also
called the collisionless Boltzmann equation.
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Fluid Equations

Sometimes the details of the distribution of velocities is not known. In this
case, we can still learn about the behavior of the plasma by looking at the
spatial fluid elements, which are derived by taking the moments of the Vlasov
equation.

Recall that if you have a distribution function then
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Then, the average of any function g(v) is given by
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The subscript indicate the sum over repeated indices. This notation is known
as Einstein notation and is a very powerful tool for simplifying vector
calculus. A slight diversion is required here to explain this notation:

Consider an orthogonal coordinate system with the unit vectors

A

" N . . .
9‘(, A, Ao Jaﬁ{ueé n -"st Oléﬁ(-

A A %N f?\ N 1S A&e .'nei oy esen
‘)‘1 X 9(2, < 3 3 4“*.
- Pe,(wwt tony (-Wt cross
~ ~ ~ Ffoéuc*'s
A XM = X
~ A A C\ N s Aee ined a3 odd
aly * %3 = N 3 2

= perw-'—a}{ou; (-ve cfoss pre Aud‘)

L

Amj veckor A Can Le worithbea as

— ~ ~ N
A$= Ao+ Az + Az %

& hexe A ([:‘,1,5) are ‘H“- Cmmroum"'& g-'. He vector.

e d

inner  produch A€ - Abix ArBra A3Ba= )fAi B¢

Eius -\':'e,w NO"’a:"(ov\ 1 27. 6-” s Ai 8 ¢
A“] NfaJZA inJ (s are 4+ Lg SUMMJ owr
For cross P foducts ) we AC eiN. ""Lt lall' -Civi "a. tenser o So

Ca((es pum{a:‘«'ov\ “’CMS'Of P eCJ.K . TL:S '\—Q,A;o( s Aﬂe‘A&A su.clA ‘u‘cd'

—_— = - '
¢ \"K - 4 .
USiu.a E.',!y"t'm nolaTioN



eil‘& =0 )f f:j, 3:[. or ¢=K (ce. ouny r-a.Pe,,J’gA inJck)

~C
=\ ﬁ( even p¢(m+a44'em s “s ')')

<
=t Re oM permutatious \L_;l\

As it turns out, all vector geometry can be analyzed quite simply using this
tensor and the identity
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We can also use this for vector calculus as well by considering the “del
operator” as a vector: 3. - Q9
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Ok, back to our regularly scheduled program! The Vlasov equation can be
written in terms of the Einstein notation:
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To solve this continuity equation, we need to know how fluid velocity evolves.
To find that, we need it take the first moment of the Vlasov equation:
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Physically, this means that each velocity can be written as the average
velocity plus a remainder, where logically the average of the remainder
should be zero.

Teton @ be covnes %BSA;,M Vc'VJ' f

- (A (Vi) (Vi) £
(4

- 2 (U [VeVj« Ve Ve Vo Vi & v v | 7
o



S iw\'\IVd Avf + w\V Se\ an—n— m Vi SJV Vr{a
+ ™ Xe\\l Vi Ve f]

L lv"\—\iivjn-v O «0+ (RJ_X

L

‘P..

'l

"y

S &V wm Vi Vrj’ F ﬂfmm“‘ He pressare / -ﬁau) ‘4 mowreatum
Term & S \T mVi o %\Ij f )M)mra,h.m by parks agesin

\ N 3—- (M Vcajﬁ) Se\\;’ma}g %_V[ - SA‘TW‘V?:F ki aj

) vy
us A(} Caau.u» 3 e maa,-,,/
law / Diver tmce gvl
Thia 4 A Hw peblea
= © — \dm & -fr § ] - o
= - S A\' 24t a(_

- S Wt % [E; + €u V;Bx\

"

- -9¢; SK;? - FCijrB S WV, = -anlﬁ-»‘i—f»cﬁ]
=N - V\Vj



O+ =

9 Pin (KN B =
- ﬁmn-v*ajmn\,\,‘rr@n\‘pj 115*61" % o

This is the equation of conservation of momentum. The first two terms can
be further simplified:
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Therefore, the conservation of momentum can be written as

F“I v "\7'] 1n[l: T |- §>§\
Called €ulu5 u(awhl‘on
mv{%%_‘_ 3 ] 1"1-6* G‘JKVJB\L—S— __j J

Tf; = (Pl s Calld pressure +ensor.

The pressure tensor is the new unknown. In order to solve this equation, we
need to know the evolution of the pressure, which means we need to get the
next moment of the Vlasov equation!
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Of course, this will need to a new unknown, which will need the next moment

and so on. In general, the system of moment equations has an infinite
number of equations, with each new moment defining a new quantity, the



evolution of which is described by the next higher moment.

This chain is usually broken at the first moment using an “equation of state”,
which is a model for variation of the pressure tensor in terms of the other
variables in the momentum conservation equation: ( n,‘(f, E ,_33

Such a model allows us to “close” this system of equations.

The most common models used assume either an absence of heat flux (the

adiabatic condition) or a constant temperature (isothermal gas law):
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Finally, this allows us to obtain an approximate closed set of equations for

the collective behavior of plasma, which are called the Maxwell-Fluid
Equations.
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For almost the rest of the class, we will explore the consequence these
equations. Before we dive deep, let’s look at some of the properties of these
equations:

1. These are approximate, but they are based on sound physical rigor. In
the book, they are introduced using plausibility arguments (to go from
Klimontovich to Vlasov to Fluid equations.)

2. Each quantity is defined at a fixed location. In going from Vlasov to fluid
equations, we average out the effect of velocity distribution. We are
therefore looking at tiny volume elements and analyzing how the
properties ascribed to such an element vary in space and evolve in time.
This is called an Eulerian description.
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This equation says that the average velocity in a volume element (a “fluid
pixel”) can change for these reasons:
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3. The pressure tensor is not necessarily isotopic. For example in a strong
applied field (such as that of a laser), the pressure can be different in the
direction parallel to the laser polarization and the direction perpendicular to it.

.e.
Pu © o
-P = |le PL o
© © P-'_.

Y. {%_f'(/z(x,.ﬂ. g% is called He comechive  decivative
v

T+ represeats . Htl decivative «'l vc,lod\—j foucu,,-,,\& He
Pa.(-"fc\e.ﬁ 4 [N pou("'(’w‘a( OEL_‘J e,‘e;.u\u“ (“% P,‘*e_[s") in

aw& eui’ "ﬂ #«&“’ elwo:l’ (V"'Fl'f—se"‘u L& il—'l-ef %‘ “’o“'ﬂ-l

Jerim‘\“we)

T[ue ts a ﬁ[w;‘ Jescn‘pkou olere -"Lese —eluui CIeuAe.u\"',s

Ove ad'uu.\lj wu.sw'ué. Such  « ée—aq:p/?‘on is  aulled 4_713.«\
Ae;a{\o‘ﬁm

5. A fluid equation exists for each “species” for which an “f’ is specified.
Therefore, we can always break up one species, for example electrons, into
several species. For example,
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Now, we will have fluid equations for both “species”, f1T and f2. This is a
powerful technique that will allow us to study a number of instabilities.

Linearization of Fluid Equations

In the analysis of waves in plasma, we often make the simplifying assumption
that the space and time vary as harmonics of fundamental spatial and
temporal frequencies (see Appendix for the review of fundamental properties
of waves). To do so, we need linear differential equations. Therefore, we will
first linearize the Maxwell-Fluid equations. Implicit in this work is the
assumption that the amplitude of the waves are “small”.
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Because the wave amplitude is going to be small, we write each parameter
as an expansion around a dominant term. Physically, this means that the
wave is a small modification on the “background” plasma:
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The complete set of linear Maxwell-Fluid equations is
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Note: in this system of equations, the fluid continuit'z gquation is redundant
and could be derived by taking the divergence of v x8 equation

We now have all the tools we need to start analyzing “small-amplitude”
waves in plasma. We will look for the natural modes of the system by finding
self-consistent solutions to the linearized Maxwell-Fluid equations.
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