
Collective behavior in plasma

So far, we have considered the motion of a particle due to Lorentz force in 
the fields prescribed by a driver. 







This “single particle motion” treatment will not be valid when many particles 
are considered because the impact of charge density and current density of 
these charges will become significant and can no longer be ignored. 



Second, keeping track of individual particle motions and their effects on the 
fields around them is not practical. (Typical plasma contains        

particles; the fastest computers can follow              )



We will therefore have to come up with a new formalism to account for the 
behavior of many particles in electric and magnetic fields. In the next few 
lectures we develop the equations that govern the collective behaviors in 
plasma, which form the foundation of much of plasma physics. 



We start from the fact that for practical purposes, we can consider particles 
point-like objects. The particle’s properties then can be described in terms of 
delta functions:

































The total charge density for a collection of particles is given as the sum of all 
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charge densities:











Total current density is then given by









Phase Space 

A highly advantageous structure for the study of plasma is to take advantage 
of the concept of the phase space. 



In real space, we consider the impact of forces on particles and then follow 
them in the space. In this case, position and velocity for a particle are both 
functions of time only: 









In the phase space, we consider the impact of forces on particles of various 
velocities at a point in space. In this treatment, rather than following particles, 
we look at the variation of properties at a certain point. Therefore, velocity 
becomes an independent variable, as particles flowing in and out of a 
position in space may have a variety of velocities, and the forces on these 
particles will depend on this variable too: 
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We derive an equation for the phase space density “F” using the continuity 
equation in the real space “n” as an aspiration. One can think of continuity 
equation as a conservation law for the number of particles:
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So far everything appears trivial and nothing more than definition. We are 
interested in an equation for “F” and we can get that by using the properties 
of delta function:
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This allows us to extract the acceleration and velocity functions from eqn 1:























































So, the conservation of particles/continuity equation can be written as









This is called the Klimontovich equation. For the phase space then, the total 
time derivative following the trajectory of a particle is given by 
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Note that the implication of the total derivative in time being zero is that there 
is no trajectory crossing in phase space. This is because


At the trajectory crossing, the two particles are at the same position, with 1.
the same velocity, experiencing the same force, which means that their 
trajectory would merge. But Newton’s equations allow one to follow 
trajectory backwards as well as forwards in time, which means that 
running time backwards, it doesn’t make physical sense for the trajectory 
of these two particles to “branch out” at t2. Therefore, the two particles 
will have the same trajectory for all time, meaning that trajectory crossing 
is not possible.   

Mathematically is two trajectories cross, then the value of F at that point 2.
will increase to  




























This implies that the “fluid” is incompressible for point-like particles.

At this point, although we have introduced the new concept of phase space, 
conceptually everything is still the same, except that the forms are different:
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In either case, calculating the trajectory of each particle is still required and 
this is not practical. To get a practical equation, we make the approximation 
where the exact function “F”  (with all the delta functions) is replaced with a 
smooth function “f”. There are several ways to view this transition, including 
the statical mechanical process of “ensemble averaging”. This process is 
detailed in Warren’s notes on pages 72(a)-73(b). I have included those pages 
in the appendix to these notes.  



My preferred way of viewing it is that “f” is a “zoomed out” version of “F”. So 
a “single point” or “pixel” of function “f” may include several particles. 
Practically, this is like creating a histogram of “F” for reasonable intervals: 
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If this process seems confusing, it is very instructive to reflect on how one 
would create a histogram for a quantity like grades or heights of people in a 
group and why those are useful concepts.  



Now, the question is whether a version of Klimontovich equation also applies 
to smooth function, “f”? Physically, the phase density “f” is impacted by all 
the same processes that effect the change in “F” (i.e. flux of particles from 
elsewhere in position and velocity space), except that now many particles 
can inhabit the same “point” in the phase space for “f”. Therefore, there is an 
additional process that changes the phase space density “f”, and that comes 
from the collision of particles that inhabit the same point:







































So, the Vlasov fluid, “f” is also an incompressible fluid. This equation is also 
called the collisionless Boltzmann equation. 
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Fluid Equations

Sometimes the details of the distribution of velocities is not known. In this 
case, we can still learn about the behavior of the plasma by looking at the 
spatial fluid elements, which are derived by taking the moments of the Vlasov 
equation.  



Recall that if you have a distribution function then 









Then, the average of any function g(v) is given by
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The subscript indicate the sum over repeated indices. This notation is known 
as Einstein notation and is a very powerful tool for simplifying vector 
calculus. A slight diversion is required here to explain this notation: 

Consider an orthogonal coordinate system with the unit vectors
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As it turns out, all vector geometry can be analyzed quite simply using this 
tensor and the identity 



























































We can also use this for vector calculus as well by considering the “del 
operator” as a vector: 
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Ok, back to our regularly scheduled program! The Vlasov equation can be 
written in terms of the Einstein notation:
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To solve this continuity equation, we need to know how fluid velocity evolves. 
To find that, we need it take the first moment of the Vlasov equation:
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Physically, this means that each velocity can be written as the average 
velocity plus a remainder, where logically the average of the remainder 
should be zero. 
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This is the equation of conservation of momentum. The first two terms can 
be further simplified:



















Therefore, the conservation of momentum can be written as

























The pressure tensor is the new unknown. In order to solve this equation, we 
need to know the evolution of the pressure, which means we need to get the 
next moment of the Vlasov equation!









Of course, this will need to a new unknown, which will need the next moment 
and so on. In general, the system of moment equations has an infinite 
number of equations, with each new moment defining a new quantity, the 
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evolution of which is described by the next higher moment.



This chain is usually broken at the first moment using an “equation of state”, 
which is a model for variation of the pressure tensor in terms of the other 
variables in the momentum conservation equation: 

Such a model allows us to “close” this system of equations. 

The most common models used assume either an absence of heat flux (the 
adiabatic condition) or a constant temperature (isothermal gas law): 























Finally, this allows us to obtain an approximate closed set of equations for 
the collective behavior of plasma, which are called the Maxwell-Fluid 
Equations.
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For almost the rest of the class, we will explore the consequence these 
equations. Before we dive deep, let’s look at some of the properties of these 
equations:




These are approximate, but they are based on sound physical rigor. In 1.
the book, they are introduced using plausibility arguments (to go from 
Klimontovich to Vlasov to Fluid equations.)

Each quantity is defined at a fixed location. In going from Vlasov to fluid 2.
equations, we average out the effect of velocity distribution. We are 
therefore looking at tiny volume elements and analyzing how the 
properties ascribed to such an element vary in space and evolve in time. 
This is called an Eulerian description.   
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This equation says that the average velocity in a volume element (a “fluid 
pixel”) can change for these reasons: 
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3.   The pressure tensor is not necessarily isotopic. For example in a strong 
applied field (such as that of a laser), the pressure can be different in the 
direction parallel to the laser polarization and the direction perpendicular to it. 
i.e.













































5.   A fluid equation exists for each “species” for which an “f” is specified. 
Therefore, we can always break up one species, for example electrons, into 
several species. For example,  
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Now, we will have fluid equations for both “species”, f1 and f2. This is a 
powerful technique that will allow us to study a number of instabilities. 





Linearization of Fluid Equations 

In the analysis of waves in plasma, we often make the simplifying assumption 
that the space and time vary as harmonics of fundamental spatial and 
temporal frequencies (see Appendix for the review of fundamental properties 
of waves). To do so, we need linear differential equations. Therefore, we will 
first linearize the Maxwell-Fluid equations. Implicit in this work is the 
assumption that the amplitude of the waves are “small”.
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Because the wave amplitude is going to be small, we write each parameter 
as an expansion around a dominant term. Physically, this means that the 
wave is a small modification on the “background” plasma: 
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The complete set of linear Maxwell-Fluid equations is
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Note: in this system of equations, the fluid continuity equation is redundant 
and could be derived by taking the divergence of          equation 



We now have all the tools we need to start analyzing “small-amplitude” 
waves in plasma. We will look for the natural modes of the system by finding 
self-consistent solutions to the linearized Maxwell-Fluid equations. 
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