About these notes

These notes are primarily taken from Introduction to plasma physics and
controlled fusion by Francis F. Chen and from my my own plasma physics
class, taught by Warren B. Mori in the year 2010.

Definition of plasma
There is no perfect definition for plasma, but there are a few that are
generally correct:

1. Loosely speaking, plasma is the fourth state of matter:
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2. A system containing mobile charges— positive, negative, or both — in
which electromagnetic interactions between the particles play the dominant
role in the dynamics of the system. The caveats to this definition is that the
plasma need not be fully ionized (could contain neutral particles), and need
not be at equilibrium.

However, as a starting point, consider the equilibrium situation. In
equilibrium, the fraction of ionized particles at a particular temperature is
given by the Saha equation:
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Examples of Plasma
1. Air at room temperature,
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What about n,? We already know from daily life experience that most of the



atoms in the atmosphere are neutral atoms. So we are going to make an
approximation: the number density of the remaining neutrals is basically the
same as the number density of initially unionized atoms. In math, this means
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Is this approximation justified? In plasma physics, we make a LOT of
approximations to make the calculations simpler or sometimes even possible
to perform. What we need to do is to keep these approximations in mind,
and once we get the final answer, check that our answer is consistent with
our assumptions. So using this approximation,
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2. Interplanetary space
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3. Stars
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In comparison, fusion targets such as solid Deuterium are much denser and
have a mass density of ©.3 g/c~® or 3ce 4 /m>

Because of the exponential dependence of Saha equation on the
temperature, the high ionization state in a star implies

KT > U;

ie. KT > loeV &~ 10° °K
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The spectrum of plasma in the universe can be represented on a continuum
of number density and temperature. The figure below is created by the
Contemporary Physics Education Project
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Next, we will need to review the concept of temperature and discuss
important time and spatial scales in a plasma

Plasma Oscillation Frequency

Plasma frequency is a natural frequency of oscillation for electrons. It is a
fundamental timescale in plasma physics and can be derived by considering
how quickly the plasma electrons in a neutral plasma move to shield out an
external electric field (here, plasma behaves like a perfect metal).

We start by imposing an electric field on the plasma, resulting in a
displacement of plasma electrons. We attribute the entire motion to electrons
because ions are thousands of time more massive, so electrons can shield
the field before ions even think about moving!
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As our calculation above shows, plasma electrons can move “as fast as” wp.
We will show later that whether an electromagnetic wave can propagate in
plasma will depend on the relation between its temporal radial frequency and
plasma frequency:
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Plasma frequency and conductivity
In electrodynamics, the concept of conductivity is usually introduced in
relation to Ohm’s law:
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The description above works well in metals because Ohm’s law describes
the relation between volume current density and electric field properly. The
question of interest here is whether Ohm’s law is valid in plasma. Let’s
examine the underlying assumptions Ohm’s law, starting with the definition
of volume current density: t €
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The question now is whether the assumption of constant drift velocity, which
allows us to relate the electric field to velocity is valid. In math, this translates
to whether the factor of 8¥ can be ignored in Egn 1.
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Therefore this condition does not generally hold for a plasma, and so
conductivity in plasma is not simply described by equation 3 and is in general
frequency dependent, rather than just being a constant of proportionality. We
will show later how one can define conductivity for plasma modeled as a
fluid.

Length scales

One way to get the length scales is to decide a velocity by a time. We already

found an important time scale @~

What are the important velocities?

1. The speed of light, ¢

2. The thermal velocity of particles, l.e. average velocity for a distribution of
particles, V‘Lh = J:Z m\yt= SKEZ

So the two length scales are
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We will discuss the significance of the first one here and the second one
later. Let’s review the concept of distribution function and the temperature: a
gas in thermal equilibrium has particles of all energies or velocities. The
velocity distribution is given by a Gaussian function:
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So, what is the average kinetic energy in this distribution?
In a general case, suppose you have a quantity g(v). The average of this
quantity is calculated by
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We are interested in kinetic energy, so
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In plasma physics, the temperature of the plasma is very often stated in
terms of average energy in plasma since K, the Boltzman constant, is just a
number. e.g. plasma with 1eV temperature:
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This derivation assumes an isotopic plasma (l.e., Tx=Ty=Tz). The case of
anisotropic plasma, where this is not the case, is an important topic in
plasma physics, particularly in laser driven plasma, where the direction of
polarization breaks the symmetry of plasma heating. For the time being, let’s
keep our focus on an isotopic plasma.

Debye Shielding

The length scale derived from the thermal velocity of plasma is called the
Debye length and is a very important length scale in plasma physics as we
will see. This length scale appears when we study the distance over which
the plasma can shield out a DC (or low frequency) electric field.

First, recall that in presence of a potential, the distribution function changes
as follows:
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Note: in electrodynamics, we often use the symbol “V” to represent the
scalar potential. In plasma physics, the scalar potential is most commonly
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Consider what happens physically if we put a source of potential, i.e. a
charge in plasma. Since the ions and electrons are both mobile in plasma,
they flow to and surround the source of the potential, such that at some
distance “d” away, the potential of the source is no longer observed. This
phenomenon is referred to as Debye shielding in plasma and the distance is
called Debye length. Let’s work out what this length is.
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This is a nonlinear differential equations. The exact solution can be found in
1D if Te=Ti. To simplify, we are going to look for solutions where the
potential is small, i.e. we are sufficiently far away from the electrodes. This
will allow us to Taylor expand and only keep a small number of terms:
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Quasi-neutrality

If the size of the plasma (L) is large compared to the Debye length, the
plasma can be considered quasi-neutral, i.e.

nl"N y)c ~N N

Where n is the common density called the plasma density. This is because
any potentials that arise due to a charge imbalance (e.g. fluctuations in
density due to tempreture) are shielded out over a distance that is short
compared to plasma, leaving the bulk of the plasma free of large electric
potential and fields.

Note: it takes only a small charge imbalance to result in potentials on the
order of KT/e. The plasma therefore is quasi-neutral, meaning that

Another perspective on the Debye length is that it describes the distance
over which the local variations in potential (e.g. due to charge density
fluctuations) are shielded out. Therefore, the density on ions and electrons
are equal in bulk of the plasma, but there are small regions of
electromagnetic activity, or as Frank Chen puts it “not so neutral that all the
interesting electromagnetic forces vanish!”

Note: quasi-neutrality is often considered a basic requirement for plasma, i.e.
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The physical picture of the relation between %p & ¢

Suppose electrons are bounded on a size “L.” and consider a typical electron
which moves past the plasma at thermal velocity V{L'
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Note: this treatment assumes that there are “enough” electrons in the Debye
length so that they actually can shield out a potential. In other words, a built
in assumption in this treatment is that the number of particles in Debye
length are:
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In a more advanced treatment of Debye shielding, one can consider how the
fields from one extra charge are screened out by the many charges. To do
S0, one can use the charge density for a single charge as a source term in

Equation 6: 5 \ =
Vi - 5. 1 q3(%
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Collisions

We close this introduction by a discussion of collisions. This course is
primarily concerned with collisionless plasma, but to understand what
collisionless means, we first need to define what we mean by collisions.

Neutral atoms: two neutral particles collide is one passes within the radius of
the other:
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Charged particles: in contrast to neutral particles, charge particles exert the
Lorentz force on each other even when they are far from each other. So the
cross section of collision is no longer a simple function of the size of the
particle.

e.g. collision between charges with opposite sign in the center of mass frame
of the positive charge)
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However, it is possible to get an approximate answer with much less algebra
by simplifying the problem. We are going to look for solutions where & is
small (small angle scattering). If the angle is small, we can make the
assumption that to the zero order, the trajectory is a straight line

§ Fraiqik s

b':" (“"‘b"’“""\') n &ocs ﬁfow -0 Yo oo



-—°\/ V% = 7._:1 R l %cz X
44 A -
né (fx 7'Jr\c;‘)%'

(2

S L G
Lhn &,
WA ) (%.,_*loz)a/?_

V‘K'.:’, Vo = Jlsvaclt (7L 40 Cj‘dvfaa W&wk—tj "A‘I'Efad')

AV = _Ze* * ‘)Ccl'l
U11E€om Vb S oL o (GAA @“&M)
2o (1(”-\10") = 5*

as e,,cPc;"eA ,aaScA on J-LQ

assuw[)"l‘ons
by  Fa_ )\ ) =czeb
A&' wA M Wéo (L1+ 9(1)3/2_

(

_ 2
= A\la _ Ze J b A% \‘n\"cam»\

-ZC?‘

X co
= —_z&~ .
Lméow‘v"L) i \]bl+”‘”\m
< T = ﬁz“'t’z’:}x

- Ze? ( | — (4))
Lfﬂéom\lol')

_ 244
Une wmy, b

"




) VO = A\[a _ 294,92
- tnh 6= Vo une,,w:l/,,zb

(Lq'?-

Exa.d’ onswe(: ‘b(m_é_: —/—_lL .- Same andwer ﬁ(f swall
An &, mVo ,,_,Jlg Gollisipas!

Since only one component of velocity changes, we can write the change in
velocity in vector form. To do so, we define vector b:
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This is the result for a single collision. We are interested in a collision
frequency, so we need to consider the impact of multiple independent
collisions. Consider collisions that occur during a time at for a single
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After a time at, the volume element at the impact parameter “b” is
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On average, there are the same number of ions on one side as the other.



In plasma, we have a population of electrons with a velocity distribution.
What we are interested in is the impact of collisions on this distribution.
So, consider “N” electrons with initial velocity V; . Because the collision of
each electron is independent from the other, the average change in
transverse momentum is expressed as
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One might suppose then that the collisions have no effect on the transverse
momentum of electron population, but this is not the case. Consider the
average change on momentum squared (the temperature)
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What is the physical interpretation of this conclusion? A stream of particles
(e.g. electrons) moving through the plasma with the same initial velocity will

have the same average velocity at the end, but with a larger momentum
spread:
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This is the hand-wavy description of this process. The proper way of doing
this, which involves stochastic mathematics and the study of random walk
process (gets to the same result!) is a topic for graduate school!

We can define a collision frequency based on this description by choosing

the time interval when AV = Vo (i.e. 90 degree scattering due to many smalll
collisions) as the collision time.
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This last condition implies that a quasi-neutral plasma is also a “collisionless”

one. This is the type of plasma that we will discuss in the rest of the class. To
summarize, these conditions are
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Incidentally, when AL - '—DQ% > ) , the plasma is called a strongly
coupled plasma. In that case, the conductivity of plasma is
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Appendix 1: current densities
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Note: current is actually a vector pointing in the direction of charge flow:
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In many problems including circuitry, we are concerned about a current-
carrying wire, but what about moving surface charge or volume charge?

Surface current density:
For moving charge over a surface, and in analogy with line current, we

define the surface current density as
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In other words, K is current per unit width.

In general, K varies from point to point over R By
the surface, reflecting variations in ¢’ and/or V. JL,’“



The magnetic force on the surface current is
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Volume current density:

This is the general formulation for current in three dimensional space and
is frequently used where charge can freely move in space, such as
modeling intergalactic plasma. Formulation is the same as the other two

types:
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One can see that if there is motion along the direction of g= 8, work will
be done on the charge particle. Indeed, this term is an important source of
heating in plasma physics.



Appendix 2: solving for the Gaussian normalization factor
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