
About these notes 

These notes are primarily taken from Introduction to plasma physics and 
controlled fusion by Francis F. Chen and from my my own plasma physics 
class, taught by Warren B. Mori in the year 2010.   



Definition of plasma 

There is no perfect definition for plasma, but there are a few that are 
generally correct:




Loosely speaking, plasma is the fourth state of matter: 
1.
















2.   A system containing mobile charges— positive, negative, or both — in 
which electromagnetic interactions between the particles play the dominant 
role in the dynamics of the system. The caveats to this definition is that the 
plasma need not be fully ionized (could contain neutral particles), and need 
not be at equilibrium. 



However, as a starting point, consider the equilibrium situation. In 
equilibrium, the fraction of ionized particles at a particular temperature is 
given by the Saha equation: 
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Examples of Plasma

1. Air at room temperature,
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atoms in the atmosphere are neutral atoms. So we are going to make an 
approximation: the number density of the remaining neutrals is basically the 
same as the number density of initially unionized atoms. In math, this means 







Is this approximation justified? In plasma physics, we make a LOT of 
approximations to make the calculations simpler or sometimes even possible 
to perform. What we need to do is to keep these approximations in mind, 
and once we get the final answer, check that our answer is consistent with 
our assumptions. So using this approximation,





















2. Interplanetary space
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3. Stars





































In comparison, fusion targets such as solid Deuterium are much denser and 
have a mass density of 



Because of the exponential dependence of Saha equation on the 
temperature, the high ionization state in a star implies 

















The spectrum of plasma in the universe can be represented on a continuum 
of number density and temperature. The figure below is created by the 
Contemporary Physics Education Project 
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Type Source Applications
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Next, we will need to review the concept of temperature and discuss 
important time and spatial scales in a plasma





Plasma Oscillation Frequency 

Plasma frequency is a natural frequency of oscillation for electrons. It is a 
fundamental timescale in plasma physics and can be derived by considering 
how quickly the plasma electrons in a neutral plasma move to shield out an 
external electric field (here, plasma behaves like a perfect metal). 



We start by imposing an electric field on the plasma, resulting in a 
displacement of plasma electrons. We attribute the entire motion to electrons 
because ions are thousands of time more massive, so electrons can shield 
the field before ions even think about moving!  
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As our calculation above shows, plasma electrons can move “as fast as”

We will show later that whether an electromagnetic wave can propagate in 
plasma will depend on the relation between its temporal radial frequency and 
plasma frequency:

















Plasma frequency and conductivity 

In electrodynamics, the concept of conductivity is usually introduced in 
relation to Ohm’s law:
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The description above works well in metals because Ohm’s law describes 
the relation between volume current density and electric field properly. The 
question of interest here is whether Ohm’s law is valid in plasma. Let’s 
examine the underlying assumptions Ohm’s law, starting with the definition 
of volume current density: 
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The question now is whether the assumption of constant drift velocity, which 
allows us to relate the electric field to velocity is valid. In math, this translates 
to whether the factor of         can be ignored in Eqn 1. 
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For copper at solid density







Therefore this condition does not generally hold for a plasma, and so 
conductivity in plasma is not simply described by equation 3 and is in general 
frequency dependent, rather than just being a constant of proportionality. We 
will show later how one can define conductivity for plasma modeled as a 
fluid. 



Length scales

One way to get the length scales is to decide a velocity by a time. We already 
found an important time scale  

What are the important velocities?


The speed of light, c
1.
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We will discuss the significance of the first one here and the second one 
later. Let’s review the concept of distribution function and the temperature: a 
gas in thermal equilibrium has particles of all energies or velocities. The 
velocity distribution is given by a Gaussian function:













































So, what is the average kinetic energy in this distribution?

In a general case, suppose you have a quantity g(v). The average of this 
quantity is calculated by
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We are interested in kinetic energy, so
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What is unambiguous is that





















In plasma physics, the temperature of the plasma is very often stated in 
terms of average energy in plasma since K, the Boltzman constant, is just a 
number. e.g. plasma with 1eV temperature: 













This derivation assumes an isotopic plasma (I.e., Tx=Ty=Tz). The case of 
anisotropic plasma, where this is not the case, is an important topic in 
plasma physics, particularly in laser driven plasma, where the direction of 
polarization breaks the symmetry of plasma heating. For the time being, let’s 
keep our focus on an isotopic plasma.  



Debye Shielding

The length scale derived from the thermal velocity of plasma is called the 
Debye length and is a very important length scale in plasma physics as we 
will see. This length scale appears when we study the distance over which 
the plasma can shield out a DC (or low frequency) electric field. 



First, recall that in presence of a potential, the distribution function changes 
as follows:
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Note: in electrodynamics, we often use the symbol “V” to represent the 
scalar potential. In plasma physics, the scalar potential is most commonly 
represented by 



















Consider what happens physically if we put a source of potential, i.e. a 
charge in plasma. Since the ions and electrons are both mobile in plasma, 
they flow to and surround the source of the potential, such that at some 
distance “d” away, the potential of the source is no longer observed. This 
phenomenon is referred to as Debye shielding in plasma and the distance is 
called Debye length. Let’s work out what this length is.  
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This is a nonlinear differential equations. The exact solution can be found in 
1D if Te=Ti. To simplify, we are  going to look for solutions where the 
potential is small, i.e. we are sufficiently far away from the electrodes. This 
will allow us to Taylor expand and only keep a small number of terms: 
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Quasi-neutrality

If the size of the plasma (L) is large compared to the Debye length, the 
plasma can be considered quasi-neutral, i.e.





Where n is the common density called the plasma density. This is because 
any potentials that arise due to a charge imbalance (e.g. fluctuations in 
density due to tempreture) are shielded out over a distance that is short 
compared to plasma, leaving the bulk of the plasma free of large electric 
potential and fields. 



Note: it takes only a small charge imbalance to result in potentials on the 
order of KT/e. The plasma therefore is quasi-neutral, meaning that  



Another perspective on the Debye length is that it describes the distance 
over which the local variations in potential (e.g. due to charge density 
fluctuations) are shielded out. Therefore, the density on ions and electrons 
are equal in bulk of the plasma, but there are small regions of 
electromagnetic activity, or as Frank Chen puts it “not so neutral that all the 
interesting electromagnetic forces vanish!” 



Note: quasi-neutrality is often considered a basic requirement for plasma, i.e.













The physical picture of the relation between 



Suppose electrons are bounded on a size “L” and consider a typical electron 
which moves past the plasma at thermal velocity 
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But, the plasma will shield out or smear out the fluctuation on a time scale of 





































Note: this treatment assumes that there are “enough” electrons in the Debye 
length so that they actually can shield out a potential. In other words, a built 
in assumption in this treatment is that the number of particles in Debye 
length are:

























In a more advanced treatment of Debye shielding, one can consider how the 
fields from one extra charge are screened out by the many charges. To do 
so, one can use the charge density for a single charge as a source term in 
Equation 6: 
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Collisions 

We close this introduction by a discussion of collisions. This course is 
primarily concerned with collisionless plasma, but to understand what 
collisionless means, we first need to define what we mean by collisions.



Neutral atoms: two neutral particles collide is one passes within the radius of 
the other: 
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Charged particles: in contrast to neutral particles, charge particles exert the 
Lorentz force on each other even when they are far from each other. So the 
cross section of collision is no longer a simple function of the size of the 
particle.



e.g. collision between charges with opposite sign in the center of mass frame 
of the positive charge) 





























However, it is possible to get an approximate answer with much less algebra 
by simplifying the problem. We are going to look for solutions where     is 
small (small angle scattering). If the angle is small, we can make the 
assumption that to the zero order, the trajectory is a straight line 
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Since only one component of velocity changes, we can write the change in 
velocity in vector form. To do so, we define vector  































This is the result for a single collision. We are interested in a collision 
frequency, so we need to consider the impact of multiple independent 
collisions. Consider collisions that occur during a time       for a single 
electron: 
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After a time     , the volume element at the impact parameter “b” is









































































On average, there are the same number of ions on one side as the other.
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In plasma, we have a population of electrons with a velocity distribution.  

What we are interested in is the impact of collisions on this distribution.

So, consider “N” electrons with initial velocity       . Because the collision of 
each electron is independent from the other, the average change in 
transverse momentum is expressed as   











One might suppose then that the collisions have no effect on the transverse 
momentum of electron population, but this is not the case. Consider the 
average change on momentum squared (the temperature) 
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What is the physical interpretation of this conclusion? A stream of particles 
(e.g. electrons) moving through the plasma with the same initial velocity will 
have the same average velocity at the end, but with a larger momentum 
spread:



































This is the hand-wavy description of this process. The proper way of doing 
this, which involves stochastic mathematics and the study of random walk 
process (gets to the same result!) is a topic for graduate school!



We can define a collision frequency based on this description by choosing 
the time interval when             (i.e. 90 degree scattering due to many small 
collisions) as the collision time.  
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The requirement for quasi-neutrality was 
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This last condition implies that a quasi-neutral plasma is also a “collisionless” 
one. This is the type of plasma that we will discuss in the rest of the class. To 
summarize, these conditions are 



 















Incidentally, when                                            , the plasma is called a strongly 
coupled plasma. In that case, the conductivity of plasma is 
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Appendix 1: current densities 





















































Note: current is actually a vector pointing in the direction of charge flow:
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In many problems including circuitry, we are concerned about a current-
carrying wire, but what about moving surface charge or volume charge?



Surface current density:

For moving charge over a surface, and in analogy with line current, we 
define the surface current density as 









































In other words, K is current per unit width. 



In general, K varies from point to point over 

the surface, reflecting variations in     and/or
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The magnetic force on the surface current is



















 





Volume current density:

This is the general formulation for current in three dimensional space and 
is frequently used where charge can freely move in space, such as 
modeling intergalactic plasma. Formulation is the same as the other two 
types: 
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One can see that if there is motion along the direction of           , work will 
be done on the charge particle. Indeed, this term is an important source of 
heating in plasma physics.  
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Appendix 2: solving for the Gaussian normalization factor
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