About these notes: these notes are based on the US Particle Accelerator
School (USPAS) series on plasma accelerators, which were taught by Alec

Thomas, Warren Mori, and myself in winter of 2019.

Preamble: relativistic electrodynamics:

A prerequisite for this class is being well-versed in electrodynamics and
relativity. In particular, you are expected to know Maxwell’s equations
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as well as the fundamental relations in special relativity
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Strength parameters for single-particle motion in laser and beam fields
We start with the equation of motion for a particle in the fields of a laser or
particle beam, ignoring force terms due to radiation pressure, etc:
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Consider two idealized situations
1. Linearly polarized laser field of an infinite plane wave
2. Aninfinite cylinder of charge moving at v, « ¢_ at radius re with uniform

density of A
These two cases are selected because they have simple solutions
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Another thing to note is the importance of constants of motion, which greatly
simplified the steps needed to get to the solution here and will be used
extensively throughout the class. So go ahead and memorize these now!
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Consider a test particle within the beam experiencing the fields
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The implied mechanical dynamic is that as the radius of motion increases,
the momentum decreases. The maximum value for the oscillation



momentum, corresponding to r=r0 is given by
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Normalizations:

In this section, we made extensive use of the normalized parameters, where
we divided a quantity by a “natural scale”, e.g. £/m¢. Normalized quantities
are very useful because they allow you to understand the relative strength of
a parameter, e.g. a laser pulse with g, ~0.0 | creates only a minor
perturbation (regardless of what combination of intensity and wavelength
create that value of ¢, ), whereas a laser with g, ~10 creates highly
nonlinear phenomena. The normalized parameters are used extensively in
description of plasma accelerators, so here we review them for the quantities
in our studies.

We have already seen the natural scales for velocity and momentum:
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Particle number density is commonly used as part of j’ & 5—5 In the context
of plasma, we normalize this variable to the background (or initial) density:
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The choice of Wy in the normalizations above depends on the relevant
frequency in the problem of interest. Several possible choices include:
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The co-moving _coordinates

This is one of the most important concepts and a source of much confusion
for those who are just starting out the study in this field. Because this fields
includes drivers of physical phenomena that are moving at near the speed of
light, many variables depend on the quantity c£— #, rather than on ‘t’ or ‘z’
alone. Therefore, a new coordinate system is developed to work with this
explicit dependence:
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Physical interpretation: Those of you who have taken laser physics classes
will immediately recognize this variable as the normalized phase of a laser
pulse traveling in vacuum, i.e.
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The phase velocity is calculated as the velocity with which a “particle” would
need to move to be at a constant phase. Mathematically, this is equivalent to
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Physically then, this new variable, 5 , indicates the location of stationary

phase for a laser moving at the speed of light.
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Similarly, a particle moving at the speed of light will maintain its position in 5
while it is moving in the Cartesian coordinates.

Note that while you may see this coordinate transform being referred to as
“going to the speed of light frame”, there are no Lorentz transforms
performed in this operation, and as such, this is not a proper change of
frame. | prefer to call this “a change of coordinate systems to a co-moving
variable”, because this operation is simply a relabeling of variable that allows
for much more intuitive interpretation of the equations of motion and fields.

Derivatives in this new coordinate system can be obtained with the use of
chain rule: Recall,
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Total time derivative: recall that the total derivative is meaningful when all the

variables are a function of time, which is the case when we look at a single
particle. In that case,
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This means that the wave equation operator becomes
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This means that if there are no explicit time variation, i.e. 9/9t'=0 ,the the
wave equation reduces to a 2D Poisson-like solution
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Another useful situation to consider is when the object is dependent on
Vit -2 instead of ct-= . This is the scenario for laser drivers for

instance, which have a group velocity in plasma slower than the speed of
light in vacuum.
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Developing_Exact Solutions and Constants of Motion Using the Framework
of Co-Moving Variables: We start by reframing the equations of motion in
terms of the scalar and vector potentials
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This set of equations are incredibly important in this class & you should
memorize them!

The top equation is an alternative formulation of the momentum equation. If
the right hand side is zero for some reason, then we recover the conservation
of canonical momentum in Classical Mechanics. These equations also
include the seed of the ponderomotive force, when ‘v’ in the second equation
is replaced by a term that has the vector potential.

One of the primary constants of motion in the plasma acceleration field is
obtained by combining the ‘2’ component of the first equation with the
second equation to get the following scalar equation:
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If we change the variables to the co-moving coordinates and drop the
primes, we get:

£ (b pe v g 9Azc) -9 Y _qv 94

But ,'ﬁ bo#\ A.—)&'a ¢ ore )e\mc"(ens *p— S onla— or onl&
wu\L\j LePQMA on t, the r«'é\/»F J\AJAA s{Ae ts zece &



E\_t [Yuc— R 4+ (f —Asc)]=o | .. @

This is a very important constant of motion, and it can also be derived from
the analysis of the Lagrangian of the system (see Appendix).

One specific case that will be very useful later is the case of a particle that
starts from rest in the region where there are no fields. In this case, the
constant of motion becomes:
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Single Particle Equation of Motion in the Fields of a Laser
So now, let’s look at the equation motion for an electron in a laser field and
then in the field of a beam.

Consider a plane laser pulse (i.e. uniform transverse spatial profile) with a
temporal profile moving along the ‘z’ direction
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A plane laser field in vacuum can be described by a transverse only vector
potential, which is a function of § only.

A A (9

This motion is more complicated than before because now we are going to
have an electron start out in front of the laser where there are no fields. The
electron will get accelerated in ‘2’ also and will spend more time in one part
of the laser than another. But while the motion in time is very complicated,

the co-moving coordinates allow for a simpler understanding of this motion.
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Long before laser arrives, we assume that the electron is at rest & the
equation of the constant of motion becomes
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From Egn. 19, we see that when we are in a relativistic regime (i.e. ag>|), the
longitudinal momentum actually becomes larger than the transverse. Since
the force of the magnetic field depends on the velocity, the importance of the
magnetic field is dependent on this parameter as well.

The results obtained so far don’t depend on the longitudinal shape of the
magnetic field. Let’s constrain the problem slightly by considering a specific
form of laser field:
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Notice that these equations describe a
parabola in phase space. Also note that

R is a positive quantity.

Next, the position of the particle can be found through integrating the

momentum equations: N
dy _ P
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If a0 was constant, it would be trivial to integrate, but even if it is not, one can
integrate by parts to get
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Assuming all orders of the derivatives for a, to be zero at §=o (i.e. the
pulse has not arrived yet) allows us to develop an infinite series solution for
«(g); i.e. the second integration by parts would give:
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This is the same solution as we would get if a0 was constant, except that

now the solution is modulated by the slowly varying amplitude of the laser
pulse.

Likewise, for z(g) we get
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We can treat the fast oscillation term in the same way as we did for “x”
keeping the lowest order of fast oscillations modulated by the laser envelope,
but this cannot be done for the slow drift term, and that one just has to get
integrated. Let’s look at the results for several canonical cases:
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These two cases are illustrated in the figures below. The Gaussian vector
potential is implemented for both set. The momentum equations are
implemented exactly as above and the ‘z’ and ‘X’ positions are calculated by



numerically integrating the momentum along § in each respective direction.

Case 1. Plane Wave

The plane wave is achieved by choosing the variables such that Z s> kS,
i.e. the pulse contains many fast oscillations, i.e.
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The top row shows the position and the bottom row shows the momentum
curves. Note these important features:
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« The position drift in ‘2’ is linear, indicating a constant drift velocity as
expected

« The “figure 8” curve that emerges when ‘x’ is plotted against ‘z’ (with the
drift taken out) is a very famous curve and can be used to understand the
radiation due to this motion. It also shows that ‘z’ oscillates at twice the
frequency of ‘x’

« The momentum curves plotted individually as a function of phase show
sinusoidal oscillation with ‘Z’ oscillating with twice the frequency of ‘X’

+ Plotted against each other, the momentum curves trace a parabola as
expected, with the maximum of P, being equal to a, and the maximum of
f: being equal to dey4 as expected.

Case 2. Gaussian Wave

Now we are going to give the wave an
envelope by the proper choice of T with
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Again, the top row shows the position and the bottom row show the
momentum curves. Note the following important features of these curves

The envelope now covers only a few periods.

The ‘X’ position just oscillates about a centroid as it follows the laser pulse.
The ‘2’ curve shows a drift again, but now the drift is not linear. So if we
took the derivative of the drift to get the velocity, unlike the plane-wave
case where we would get a constant velocity, now we would get a varying
velocity, which implies an acceleration. This implies a time-averaged force,
which is called a ponderomotive force, which we will get back to later.

The momentum curves follow the vector potential, so one can see the
amplitude of oscillation of momentum curves following the envelope of the
vector potential.

The longitudinal period oscillates at the second harmonic and is only
positive. So while might think of the electron moving back and forth in the
oscillating field of the laser, in the longitudinal direction, the electrons are
only pushed forward.

Looking at the momentum phase space (the right curve) one can see
however that the relation between the momentum curves stays the same
as before even though now the amplitude of the momenta are changing.
However because the amplitude of momenta are changing, the peaks are
not reached during every oscillation. Nevertheless the particle in phase
space still traces the parabolic curve.

Note that so far, we have assumed a transversely uniform laser pulse. In
reality, laser pulses have finite width, which complicated the problem, but for
now, we are going to leave this topic and look at a particle beam.



Single Particle Equation of Motion in the Fields of a Particle Beam Driver

Assume we have a cylindrically symmetric beam traveling with negligible
focusing effects (e.g. because of a long focal length optic)
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For a driver that is moving at a velocity close to the speed of light, we can

often enormously simplify the problems by introducing the quasistatic
approximation:
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With this quasistatic approximation, and assuming that the fields associated

with accelerating the beam have propagated far away, we calculate the fields

starting from the Maxwell’s equations in the Cartesian coordinates in terms

of potentials and in the Lorentz Gauge:
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The two equations above are very important as they completely define the
vector potential and its relation to the scalar potential. Scalar potential in turn
can be solved from equation 29, which is a 2D Poisson’s equation. Moreover,
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Assuming cylindrical symmetry, we can solve for the fields using the
Maxwell’s equations:



-

E:-v¢‘ % Tn Caclesian C»o(ACMJ\'Qé
B>= 6>XZ>

In Cc-vu\-oviu& (.no(é,wd-*es )

or
Ez=-- W _ Az
92 t
_ 99 _ QAL (WA
K3 0

° ‘iyas\'-sh%c approxinwf ‘on
=gz %(¢-A2C)So --.@

Physically, this is understood as the field lines bunching transversely
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For an electron beam, the directions are reversed.

So far, we haven’t said anything about the profile of the beam. The only
stipulation has been that the beam is highly relativistic and cylindrically
symmetric. Now we look at the motion of a particle in the field of the beam:



From Constd o webiow, Bgn. 37 X-22 o1 Hie a  gackle
iwi\-ta\\j ok rest.

3> 2 2
Also X = \4—(‘;—2‘) < (Lw-\i)
ee . L B2 \ L@

Mmc 1 wm?c?

s vs seilel Yo Mo \aser

1’0 So\Ue fo( L, We &ok aat “"Lﬂ— faJi‘dJ e“_ﬂ °£ Mo‘\'to/h

dfc . 4 Er + ¢4 (V< T)
At, 1 C + ano"ﬁ: B=B¢8: .EZ'¢

. 1(-D)¥ L&

= ‘Pr%=-1'fm(l-v_z V, e

L. 3 o

Conshant ...Q WAD tiown

‘-\ &:1 = — MA'—r ia—@
It'(’-) 1 At I i rale

(A
() - tm B[ (B4
;all-fa.l decivative, so He

expression in  Square brackets

s weh s:wf\j @
= Pr:J-Mrmg%g& .. @)

In general, this is fairly complicated, but as we see later, we are interested in
a tightly focused beam, and we want to look at particles outside of this
beam. So choose a beam with compact support, i.e. a beam with nonzero
charge density only up to radius %) e,a_ fo
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