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Haitao Zhu3,§, James C. Smith2 and Gerald H. Thomsen3

1Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke’s Hospital,
Cambridge CB2 0QQ, UK
2MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
3Department of Biochemistry and Cell Biology and Center for Developmental Genetics,
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1. Summary
Transforming growth factor b superfamily members signal through Smad tran-

scription factors. Bone morphogenetic proteins (BMPs) act via Smads 1, 5 and 8

and TGF-bs signal through Smads 2 and 3. The endocytic adaptor protein

Eps15R, or ‘epidermal growth factor (EGF) receptor pathway substrate 15-related

protein’ is a component of EGF signal transduction, mediating internalization of

the EGF receptor. We show that it interacts with Smad proteins, is required for

BMP signalling in animal caps and stimulates Smad1 transcriptional activity.

This function resides in the Asp-Pro-Phe motif-enriched ‘DPF domain’ of

Eps15R, which activates transcription and antagonizes Smad2 signalling. In

living cells, Eps15R segregates into spatially distinct regions with different

Smads, indicating an unrecognized level of Smad compartmentalization.
2. Introduction
Members of the transforming growth factor b (TGF-b) superfamily signal

through transmembrane receptors comprising type I and type II serine/threo-

nine kinases, and the two main TGF-b subfamilies, the bone morphogenetic

proteins (BMPs) and the TGF-bs, activins and nodals, activate distinct combi-

nations of type I and type II receptors [1]. These activate different Smad

transcription factors: BMPs activate Smads 1, 5 and 8, and TGF-bs activate

Smads 2 and 3. These receptor-regulated Smads, together with their common

partner Smad4, orchestrate ligand-specific transcriptional responses [2].

The BMPs function in embryonic axis formation, neural development and

adult tissue homeostasis. Pathological consequences of BMP dysregulation

include birth defects and cancer: an understanding of BMP signalling is thus

of clinical as well as biological significance [3,4].

Endocytic components help control the response to paracrine signalling, in

part by regulating cell-surface receptor levels [5–9]. Eps15R is a member of the

Eps15 homology domain (EH domain) family [10], whose members facilitate
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clathrin-mediated endocytosis via interactions with the clathrin

adaptor protein AP2 [11]. Eps15R functions in epidermal

growth factor (EGF) signalling, where it is required for receptor

internalization [12,13]. Here, we show that Eps15R interacts

with Smad1 and is required for BMP signalling but not

for activin or fibroblast growth factor (FGF) responsiveness.

By visualizing Eps15R–Smad complexes in living cells,

we show, remarkably, that Eps15R segregates into distinct

subcellular pools when paired with either Smad1 or Smad2.
total
embryo
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Figure 1. The endocytic adaptor protein Eps15R interacts with Smad1.
(a) Xenopus Eps15R and deletion constructs. The N-terminal portion contains
three Eps15 homology (EH) domains (green, orange and purple), followed by a
coiled coil domain (blue) and carboxy-terminal DPF tripeptide repeat domain
(black). (b) Eps15R binds to Smad1 in the yeast two-hybrid assay, as detected
by b-galactosidase activity. Interaction requires the DPF domain of Eps15R.
(c) Eps15R and Smad1 interact in Xenopus embryos. Embryos were injected
with Myc-tagged full-length Eps15R mRNA alone or with Flag-tagged Smad1
mRNA. Lysates were immunoprecipitated (IP) with anti-FLAG antibodies and
then western blotted with anti-Myc antibodies. Whole embryo lysates were
immunoblotted with anti-Myc and anti-FLAG antibodies. (d ) GFP-Eps15R is
enriched in bright punctate foci located both juxta-membraneously and deeper
within the cytoplasm of Xenopus animal cap cells. Lower fluorescence levels are
found in the nucleus. (e) Histone B4-RFP and mCherry-GPI expression in cells
shown in (d ). ( f ) Limited co-localization of GFP-Eps15R and mCherry-Hrs 1 h
after stimulation with 100 ng ml – 1 BMP4/7.
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3. Results and discussion
3.1. Eps15R interacts with Smad1
Xenopus embryos provide a powerful model system to ana-

lyse BMP signalling. To identify BMP pathway modulators,

we performed a yeast two-hybrid screen using Smad1 as

bait and a Xenopus cDNA library as prey. We obtained a frag-

ment of Xenopus laevis Eps15R and then isolated a full-length

version from a Xenopus cDNA library.

Xenopus Eps15R encodes a protein of 897 amino acids that

shares 73 per cent amino acid identity with human and mouse

Eps15R. Like its mammalian orthologues, Xenopus Eps15R con-

tains three copies of an EH domain and a coiled-coil domain

that mediates protein dimerization [14]. At their C-termini,

Xenopus and mammalian Eps15Rs contain a series of aspar-

tate-proline-phenylalanine (DPF) tripeptide repeats, known as

the DPF domain [10] (figure 1a). We found that Eps15R inter-

acts with the MH1 domain of Smad1 through the DPF domain

both in yeast by two-hybrid assay (figure 1b) and in Xenopus
embryos by co-immunoprecipitation (figure 1c).

Eps15R is widely expressed during Xenopus development,

and is enriched in neural tissue and mesodermal derivatives

such as somites (see electronic supplementary material,

figure S1). We examined its protein localization in Xenopus
ectodermal cells using a GFP-tagged version of Eps15R after

confirming the functionality of this protein (see electronic

supplementary material, figure S2). There was weak nuclear

fluorescence and strong fluorescence in punctate foci at the

cell surface, consistent with the reported distribution of mam-

malian Eps15R (figure 1d,e). Some foci were intracellular,

suggesting that Eps15R is present in a subset of endocytic ves-

icles. Eps15 interacts with the endosomal marker Hrs [15,16];

so we asked whether Eps15R co-localizes with this protein. A

few vesicles were positive for both proteins, in unstimulated

cells (data not shown) and in cells treated with BMP4/7

(figure 1f ). Such overlap was rare, suggesting that Eps15R

resides predominantly in a compartment distinct from Hrs.

3.2. Eps15R is a specific modulator of bone
morphogenetic protein signalling

Over-expression of Eps15R RNA caused defects of the eye and

anterior mesendoderm (figure 2a,b). Loss of function was

achieved using a translation-blocking antisense morpholino

(MO). Morphant embryos had short axes, eye defects and

swelling around the heart cavity (figure 2c,d). Co-injection of

Myc-tagged (MT)-Eps15R RNA reduced the severity of defects

(figure 2e). Whereas 81 per cent (n ¼ 26) of Eps15R morphants

had curved axes, such defects were only observed in 17 per

cent (n ¼ 24) of rescued embryos and 8 per cent (n ¼ 24) of

embryos injected with control MO. We quantitated the
degree of axial rescue using the morphometric ratio of post-

anal tail length : anteroposterior length (PAT/AP length ratio;

figure 2f,g). Whereas this measure was decreased in Eps15R

morphants ( p , 0.01), there was no significant difference

between the control and rescue groups, indicating a successful

rescue of this phenotype (figure 2f ).
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Figure 2. Eps15R enhances Smad1 signalling and is required for transcription in response to BMP signalling. (a,b) Over-expression of a control RNA encoding lactate
dehydrogenase (LDH) does not impair development (a), whereas over-expression of Eps15R RNA causes defects in head and anterior mesoderm (b).
(c – e) Phenotypes of embryos injected with an antisense MO oligonucleotide targeting Eps15R. (c) Controls. (d ) Embryos injected with Eps15R MO exhibit shortened
axes and ventrolateral defects. (e) The phenotype in (d ) is significantly rescued by co-injection of MT-Eps15R RNA. ( f ) Morphometric analysis of PAT : AP length
ratio in these embryos. Measurements were subjected to ANOVA and Tukey’s test for least significant difference. (g) Diagrammatic depiction of the PAT and AP
measurements. (h) Expression of BMP targets Xhox3 and Xbra is elevated when Eps15R is co-expressed with Flag-Smad1 in the animal cap assay; caps were
harvested at NF11.5. (i) Eps15R MO inhibits transcription of BMP-responsive genes in animal caps treated with 100 ng ml – 1 BMP4/7 heterodimers and harvested at
NF11.5, yet there is no decrease in activation of these genes in response to 100 ng ml – 1 FGF4 (FGF) or 10 ng ml – 1 activin (act). Fold induction was calculated
relative to control cap levels, and samples were normalized to the expression of ornithine decarboxylase.
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domain alone, on Xenopus development. (a) Uninjected embryos. (b) Embryos injected with 3 ng RNA encoding Eps15R. (c) Embryos injected with 3 ng RNA encoding the
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Xbra and Xhox3 in NF11 gastrula caps but the full-length Eps15R lacks this ability. (f ) Both full length Eps15R and the DPF domain can transactivate transcription in the
yeast assay. (g) The cytoplasmic localization of GFP-Eps15R-DDPF is disrupted, displaying a diffuse, reticulated cytoplasmic distribution, in contrast to the punctate
cytoplasmic localization of the full-length version shown in figure 1d. Nuclear enrichment is retained in the absence of the DPF domain. (h) The DPF domain antagonizes
the ability of Smad2 to induce expression of genes such as chordin, goosecoid and Frzb in NF11 gastrula animal caps, which instead activates the ventral marker Xhox3.
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The interaction between Eps15R and Smad1 suggests that

Eps15R is involved in BMP signalling. Over-expression of

Eps15R in animal caps did not activate BMP-responsive genes

(figure 2h). However, co-expression of Eps15R with Smad1

enhances the ability of this BMP signal transducer to activate

targets such as Xbra [17–21] and Xhox3 [22] (figure 2h). The

GFP-Eps15R construct also synergizes with Smad1 to upregu-

late these genes, confirming that the fusion protein we used in

our localization assays (figure 1) retains functional activity

(see electronic supplementary material, figure S2). The results

of these synergy experiments suggest that Eps15 family pro-

teins function in BMP signalling in addition to their role in

EGF signalling. Further support for this comes from our discov-

ery that the Eps15R MO significantly reduced BMP4/7-induced

expression of the target genes Xbra, Tbx6, Bix1 and Vent1 in

animal caps [23] (figure 2i and data not shown). The inhibitory

effect of Eps15R depletion on BMP signalling is specific; neither

activin nor FGF signalling was significantly reduced by loss of

Eps15R (figure 2i).
3.3. The DPF domain transactivates gene expression
and mimics bone morphogenetic protein activation

The DPF domain is required for the interaction of Eps15R

with Smad1 (figure 1b) and it also binds AP2, which recruits
clathrin to the cell surface [24]. We tested the activity of the

DPF domain by injecting embryos with RNA encoding this

protein region. Development appeared significantly per-

turbed by injection of 3 ng mRNA encoding the DPF

domain, relative to an equivalent amount of full-length

RNA (figure 3a–c), although a precise quantitative compari-

son of the effects of the RNAs would require equivalent

molar amounts to be injected. The embryos appeared ventra-

lized, consistent with the ability of the DPF domain to induce

expression of the ventral marker a-globin in animal caps

(figure 3d ). The DPF domain of Esp15R mimics Smad1-

mediated gene induction, upregulating the expression of

Xbra and Xhox3 in animal caps (figure 3e), whereas neither

the full-length protein nor the N-terminal 597 domain pos-

sesses this ability. It is possible, in a manner analogous to

Smad proteins [25], that intramolecular interactions between

the N-terminal EH domains and the DPF repeats inhibit the

function of the full-length protein, and that these do not

occur when the DPF domain is expressed alone.

The ability of the DPF domain to mediate transcription

was confirmed by a yeast activation assay (figure 3f ),

which showed that full-length Xenopus Eps15R has the ability

to transactivate gene expression, and that this activity resides

within the DPF domain.

The importance of the multifunctional DPF domain is

further demonstrated by the mislocalization of Eps15R
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Figure 4. Differential compartmentalization of Eps15R/Smad complexes. Live imaging of Eps15R/Smad complexes monitored by bimolecular fluorescence
complementation (BiFC). (a,c,e,g) Greyscale images of BiFC fluorescence. (b,d,f,h) Merged images of BiFC fluorescence in green and CFP-histone H2B (to label nucleus)
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(Eps15R/Smad2); n ¼ 24 (Eps15R-DDPF/Smad2). (a,b) Cells injected with VN-Eps15R and VC-Smad1 have nuclear BiFC fluorescence, with enrichment in localized
regions. (c,d) VN-Eps15R-DDPF does not interact with VC-Smad1. (e,f ) Complexes of VN-Eps15R and VC-Smad2 are distributed in punctate dots throughout the cell.
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when this domain is deleted (figure 3g). In contrast to the

presence of GFP-Eps15R in both the nucleus (figure 1d )

and punctate cytoplasmic foci (figure 1f ), the latter aspect

of localization is not seen upon expression of the GFP-

Eps15R-DDPF construct; instead there is reticulated

expression throughout the cytoplasm, while the nuclear local-

ization is retained (figure 3g). As the appendages of the

endocytic adaptor a-adaptin are known to interact with

DPF domains of endocytic proteins such as Eps15, epsin

and AP180 [24], the loss of this region of Eps15R may inhibit

its endocytic compartmentalization.

In contrast to its ability to activate BMP-responsive target

genes, the DPF domain antagonized the TGF-b pathway, pre-

venting induction of the dorsal mesodermal markers chordin,

goosecoid and Frzb in response to Smad2 (figure 3h). This

suggests that Eps15R modulates the two major branches of

the TGF-b superfamily, enhancing Smad1 signalling while

antagonizing the Smad2 pathway.
3.4. Eps15R localizes to distinct cellular compartments
when complexed with different Smads

To ask whether Smad1 interacts with Eps15R in a specific sub-

cellular compartment, we performed bimolecular fluorescence

complementation (BiFC), a technique that allows one to observe

protein associations in living cells [26,27]. In this approach, one

protein is tagged with the N terminal half of the YFP variant

Venus and the other with the C terminal half: if the two

halves are brought together by interaction between Smad1

and Eps15R, they form a functional fluorophore.

Nuclear fluorescence was seen in isolated Xenopus ecto-

dermal cells after co-injection of VN-Eps15R and VC-Smad1

RNAs (figure 4a,b). Complexes were present in intense punc-

tate foci, suggesting that the proteins function within a

nuclear sub-compartment. This result, in combination with

our finding that Eps15R enhances Smad1 signalling and

transactivates gene expression, suggests that Eps15R acts as
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a component of the Smad1 transcriptional complex. No fluor-

escence was detected outside the nucleus, indicating that

Eps15R does not localize with the cytoplasmic fraction of

Smad1 and that Smad1 does not associate with Eps15R

near the cell membrane. Deletion of the DPF domain pre-

vented the interaction of Eps15R with Smad1 (figure 4c,d ),

confirming the importance of this domain in facilitating the

interaction and serving as a specificity control for BiFC.

As GFP-Eps15R-DDPF bears the identical R589* mutation

yet is still expressed in cells (figure 3g), this point mutation

does not render the truncated protein unstable.

Our discovery that the Eps15R DPF domain abrogates

Smad2 signalling (figure 3h), yet mimics Smad1 activity,

inspired us to investigate further the relationship between

Eps15R and Smad2 using BiFC. Complexes of Eps15R and

Smad2 were detected by BiFC (figure 4e,f ); this interaction

also requires the DPF domain (figure 4g,h). Intriguingly, the

localization of Eps15R/Smad2 complexes differs from that of

Eps15R/Smad1 complexes, being distributed in punctate foci

in the cytoplasm, as if in an endocytic vesicle. Additional flu-

orescent foci were observed adjacent to the cell membrane

(figure 4f, arrows). These may represent coated pits, because

mammalian Eps15R is enriched in this subcellular compart-

ment [28,29]. In some cells, there appears to be a greater

prevalence of Eps15R/Smad2 foci in the vicinity of the nucleus

(20%; n ¼ 9/45) but this is not a consistent observation.
4. Conclusions
We show that Eps15R is required for BMP signalling in animal

caps, providing the first functional link between this com-

ponent of the endocytic machinery and the BMP pathway. In

drawing this conclusion, we have performed protein–protein

interaction studies and loss-of-function and gain-of-function

experiments. We note that our experiments have primarily

involved ex vivo assays, so the importance of Eps15R in mod-

ulating BMP signalling during embryogenesis remains to be

established, because it can also modulate other embryonic

signalling pathways, such as EGF signalling.

The extent to which Eps15R function is conserved in the

regulation of BMP and EGF signalling is unknown, but

both EGFR and BMPRII can be internalized through cla-

thrin-dependent and clathrin-independent endocytosis and

Eps15R has been implicated in both processes in EGFR

trafficking [13,30]. Eps15, Eps15R and epsin contain ubiqui-

tin-interacting motifs that bind to ubiquitylated EGFR and

are required for clathrin-independent endocytosis [13].

BMPRII can also be ubiquitylated, and Eps15R was identified

as a binding partner of BMPRII [30], so it may also be

involved in the internalization of this receptor.

Although Eps15R is found in coated pits, the distribution

of Eps15R/Smad1 BiFC fluorescence does not resemble any

endocytic compartment but is localized to the nucleus.

Eps15R may thus have a transcriptional role in BMP signal-

ling, enhancing the weak transcriptional activity of Smad1.

The subnuclear distribution of Eps15R/Smad1 complexes is

intriguing. Subnuclear structures include PML bodies and

transcription factories; it is possible that Eps15R/Smad1 is

incorporated in such structures.

The differences in Eps15R distribution, depending upon

whether it is associated with Smad1 or Smad2, suggest that

the protein has different roles in TGF-b and BMP signalling.
The location of the Eps15R/Smad2 complexes is consistent

with their incorporation into endocytic vesicles; the family

member Eps15 has been detected in early and late endosomes

[31]. As the DPF domain of Eps15R attenuates Smad2 signal-

ling, perhaps it represses Smad2 transcriptional complexes,

or targets Smad2 for endocytic degradation via the ubiquitin

ligase Nedd4L [32].

Smad proteins mediate intracellular antagonism between

the activin and BMP pathways in Xenopus [33]. One

suggested mechanism for such intracellular antagonism is

the competition of pathway-specific Smads such as Smad1

and Smad2 for a limited pool of the common Co-Smad,

Smad4 [33]. It is possible that endocytic components such

as Eps15R may modulate the availability of Smad1 and

Smad2 for partnership with Smad4 through differential

subcellular targeting via endocytic pathways.

As Eps15R interacts with both BMP and TGF-b receptor

Smads (R-Smads), it is likely also to partner with the other

R-Smads in these classes: specifically the BMP-Smads, Smad5

and Smad8, and the TGF-b-Smad, Smad3. It will be interesting

to determine whether Eps15R can also interact with the more

divergent Co-Smad, Smad4, or the inhibitory-Smads, Smad6

and Smad7 [34], and the extent to which the Eps15R/Smad

interactions are regulated by Smad phosphorylation status.

Smad4 enters into heteromeric signalling complexes with acti-

vated R-Smads [35,36], and Eps15R may be associated with

these heteromeric complexes; alternatively it may interact

with R-Smads in a Smad4-independent manner.

Our work identifies interactions between Eps15R and

Smads 1 and 2, and emphasizes the utility of BiFC for inves-

tigating Smad signalling, allowing live visualization of

spatially distinct Smad compartments that cannot be distin-

guished with cross-reacting antibodies. It will be interesting

to discover whether other DPF domain-containing proteins

bind Smads, as this could allow selective trafficking of

these important signal transducers by numerous endocytic

proteins containing DPF or structurally related NPF domains.
5. Methods
5.1. Cloning of Eps15R genes and construction

of expression plasmids
A partial cDNA isolated from a yeast two-hybrid screen

using Smad1 as bait [37] was used to screen a Xenopus
oocyte cDNA library to obtain a full-length Xenopus Eps15R

cDNA clone (pBSK-Eps15R; Genbank accession no.

AY254055). Expression constructs were cloned in the CS2þ
vector or its derivatives (see text).
5.2. Embryo manipulation and embryonic assays
Embryo culture, isolation and staging were performed under a

Home Office licence, as described [21]. Total RNA was prepared

from animal caps and analysed by RT-PCR either by Lightcycler

(Roche) or by conventional radioactive methods. The Eps15R MO

sequence was: 50-TGAGAGGGATGAGCGCCGCCATCTT-30;

the control was the standard MO from Gene Tools. RT-PCR

and confocal results were replicated in independent biological

experiments using n¼ 10 animal caps for each sample. n . 12

embryos were scored in the morphological assays.



rsob.royalsocietypublishing.org
Open

Biol2:120060

7

on October 5, 2014Downloaded from 
5.3. Immunoprecipitation
Embryos were lysed in Oocyte Lysis Buffer (250 mM sucrose,

100 mM NaCl, 2.5 mM MgCl2, 10 mM NaF, 10 mM EGTA,

1 mM Na3VO4, 20 mM HEPES (pH 7.2) and 1% Triton

X-100) containing protease inhibitors (10 mg ml– 1 leupeptin,

1 mg ml– 1 aprotinin, 1 mg ml– 1 pepstatin A), cleared by

centrifugation and immunoprecipitated with an anti-Flag

monoclonal antibody (Sigma) in combination with protein

G-Sepharose (Pharmacia) prior to immunoblotting.

5.4. Yeast assays
Amino acids 1–253 of Xenopus Smad1 were fused to the

GAL4-DNA binding domain in plasmid pGBT9. Xenopus
Eps15R constructs were linked to the yeast GAL4 activation

domain in pGAD10. These included a full-length fusion

protein (pGAD/full-length), the N-terminal amino acids 1–

597 (pGAD/597) and a C-terminal DPF segment encoding

amino acids 590–897 (pGAD/DPF). Recombinant plasmids

were co-transformed into the yeast reporter strain Y153, sub-

jected to HIS32 selection and scored for b-galactosidase

activity to confirm protein–protein interactions. To test for

Eps15R intrinsic transcriptional activity, amino acids 1–597,

1–365 and 590–897, corresponding to the Eps15R 597, EH

and DPF segments respectively, were fused to the GAL4

DNA-binding domain and cloned in pGBT9.

5.5. Bimolecular fluorescence complementation and
confocal microscopy

BiFC constructs were tagged N-terminally with optimized

versions of the N-terminal or C-terminal fragments of
Venus [38]. ORFs were fused in frame to the BiFC fragments

via a 6-Arg linker to generate VN-Eps15R and VC-Smad1;

VC-Smad2 has been described [38]. Site-directed mutagenesis

of Eps15R (R589*) was used to make VN-Eps15R-DDPF as

well as the GFP-Eps15R-DDPF used in localization exper-

iments. Animal caps from embryos co-injected with 100 pg

each of VN-Eps15R RNA and either VC-Smad1 or VC-

Smad2 were dissociated into single cells by cutting and

culturing caps from NF8 embryos in 1 � CMFM solution

(88 mM NaCl, 1 mM KCl, 2.4 mM NaHCO3, 7.5 mM Tris,

pH 7.6) for 30 min. The unpigmented inner epithelial cells

were separated from the outer pigmented cells as the latter

are refractory to dissociation. The inner epithelial cells were

transferred onto glass-bottomed dishes (MatTek Corpor-

ation), pre-coated with E-cadherin, and containing 3
4 NAM

and 0.2 per cent BSA. The dishes were subjected to minimal

movement for 30 min to allow the cells to adhere before

they were imaged live by confocal microscopy [39].
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