AMS Foundation Exam - Part A, January 18, 2024

Name:	ID Num	
LA: / 30 AC: / 30	Total:	/ 60

This component of the Foundation Exam (Part A) consists of two sections (Linear Algebra and Advanced Calculus) with three problems in each. Each question is worth 10 points; answer all **THREE** questions from **EACH** section. Each problem should be solvable in approximately 20 minutes or less. Show all work and/or justify your responses.

Your solutions must be submitted within 5 minutes of the end of the exam. Submission instructions:

- 1. Scan your pages, ordered and oriented appropriately, into a single PDF file. Make sure that each problem's solution is clearly labeled.
- 2. Email the PDF file to Professor Li (xiaolin.li@stonybrook.edu), CCing Professor Green (david.green@stonybrook.edu). Your email should be titled "AMS Foundation Exam Part A" and does not need to contain any text in its body.
- 3. Late submissions those received after 11:05 am EST on January 18, 2024 (as timestamped by the SBU email service) will not be scored.

Good Luck!

Academic integrity is expected of all students at all times, whether in the presence or absence of members of the faculty. Understanding this, I declare that I shall not give, use, or receive unauthorized aid in this examination.

Signature

Section 1: Linear Algebra

1. Let I be an $n \times n$ identity sub-matrix, A be an $m \times m$ square sub-matrix, prove

$$\left|\begin{array}{cc}I & B\\\mathbf{0} & A\end{array}\right| = |A|$$

where **0** and *B* are $m \times n$ and $n \times m$ rectangular zero and non-zero sub-matrices.

2. Given the linear transformation $F: R^4 \to R^3$ defined by:

$$F(x, y, z, w) = (x + 2y + w, 2x - y + 2z - w, x - 3y + 2z - 2w)$$

- (a). Find the matrix representation of $F = A [x, y, z, w]^{T}$.
- (b). Find the basis and dimension of the image of A.
- (c). Find the basis and dimension of the kernel of A.
- (d). Find a vector that is NOT in the kernel of A.
- (e). Find a vector that is NOT in the image of A.

3. Given the matrix A as follows

- (a). Find all eigenvalues and eigenvectors of A.
- (b). Find P and P^{-1} such that $P^{-1}AP = \Lambda$, where Λ is diagonal.
- (c). Find A^{10} .

Section 2: Advanced Calculus

1. Give the best estimate of lower bound for the following double integral

$$I = \int_0^\infty \int_0^\infty \frac{\sqrt{1+x^2}}{\sqrt{1+y^2}} e^{-(x^2+y^2)} dx dy.$$

Hint: apply Cauchy-Schwarz.

2. A rectangular box without a lid (top side) is to be made from $27m^2$ of cardboard. Find the maximum volume of such box.

3. Find the Taylor expansion at x_0 for the following functions, calculate the radius of convergence.

(a).

$$f(x) = \frac{1}{(1+2x^2)^2} \quad x_0 = 0.$$
(b).

$$f(x) = \frac{1}{x^2} \quad x_0 = 1.$$