
Applied Mathematics and Statistics

Foundation Qualifying Examination Part B

in Computational Applied Mathematics

Spring 2019 (January)

(Closed Book Exam)

Please solve 3 out of 4 problems for full credit.

Indicate below which problems you have attempted by circling the appropriate numbers:
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B1. (10 points)

(a) Show that two Lagrangian functions L1 and L2 which differ by the total time derivative dΛ/dt of
some function Λ(q, t),

L1 = L2 + dΛ/dt,

are equivalent, leading to the same Lagrange’s equation of motion.

(b) What is the relation between the generalized momenta p1 and p2 that these two Langangians yield?

(c) What is the relation between the Hamiltonian functions H1 and H2 that these two Langangians yield?

(d) Show explicitly that Hamilton’s equations written using two sets of quantities (with indices 1 and 2)
are equivalent.
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B2. (10 points)
Consider the following Riccati equation

y′ + xy2 +
1

x
y − 1 = 0.

(a) Transform this equation to a second order linear equation.

(b) Perform analysis of singular points of the second order linear equation on the interval x ∈ [0,+∞).

(c) Find the leading behavior of two solutions to the second order linear equation as x→ +∞.

(d) Using previous results, obtain the leading behavior of the general solution to the Riccati equation as
x→ +∞.
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B3. (10 points)

Let A ∈ Rm×n, where m ≥ n, and A has full rank. Let B =

[
αI A
AT 0

]
, where α ∈ R\{0}.

a) (2 points) Show that B is nonsingular.

b) (2 points) Is B positive definite, positive semidefinite, or indefinite? Justify your answer.

c) (3 points) Show that the largest singular value of B is greater than that of A.

d) (3 points) Show that B
[
r
x

]
=

[
b
0

]
has a solution with x = A+b.



This page is intentionally blank. Continue your answer on this page.



B4. (10 points)
Consider the minimal residual (MINRES) method for solving Ax = b, where A ∈ Rn×n is symmetric.

a) (3 points) What is the smallest value for k such that Kk(A, b) = Kk+1(A, b)? Justify your answer.
(Hint: You need to take into account both A and b).

b) (2 points) Assuming exact arithmetic, how many iterations does it take for MINRES to arrive at the
exact solution?

c) (2 points) If A is nonsymmetric, what Krylov subspace method can be applied to solve Ax = b?

d) (3 points) Do the answers in parts (a) and (b) apply to this method for nonsymmetric A in (c)? Justify
your answer.
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