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B1. (10 points) Consider the following differential equation

(x− 1)y′′ − xy′ + y = 0.

a) Find and classify all singular points.

b) Obtain two linearly independent solutions at x = 1 using the method of Frobenius.

c) Use your results to prove that a Taylor serier expansion of any solution to this differential equation
about x = 0 has an infinite radius of convergence.
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B2. (10 points) Consider the following initial value problem (IVP) with a small positive parameter ε

y′′ + (1 + ε)y = 0, y(0) = 1, y′(0) = 0.

a) Obtain a first order perturbative approximation y(x) = y0(x) + εy1(x) to this IVP.

b) Find the exact solution to the IVP.

c) Compare the behavior of the perturbative solution at large x with the exact solution. In which x-
domain is this approximate solution valid?
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B3.
Let A ∈ Rm×n be a matrix with rank n − 1, where m ≥ n. Suppose AP = QR is the reduced QR

factorization of A with column pivoting, where P is a permutation matrix, such that the diagonal entries of
R are non-increasing in magnitude, i.e., |r11| ≥ |r22| ≥ · · · ≥ |rnn|. Ignore the effect of rounding errors.

a) (5 points) Show that rnn = 0.

b) (5 points) Express the null space of AT in terms of Q.
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B4.
Let A =

[
I B
BT I

]
, where B ∈ Rm×m with ‖B‖2 < 1.

a) (5 points) Show that the columns of the matrix

X =

[
U U
V −V

]
are the eigenvectors of A, where B = UΣV T is a singular value decomposition of B. What are the
corresponding eigenvalues?

b) (5 points) Show that A is symmetric and positive definite, and its condition number in 2-norm is

κ(A) =
1 + ‖B‖2
1− ‖B‖2

.
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