Optically Chopped PIR Sensor for Occupancy Detection and Activity Tracking

Ya Wang, Ph.D.

Director of Nanomaterial Energy-Harvesting and Sensing (NES) Lab Assistant Professor, Department of Mechanical Engineering Stony Brook University March.27, 2018

OUTLINE

MOTIVATIONS

- Background introduction
- Issues with existing PIR sensors
- Our solution
- OPTICALLY CHOPPED PIR SENSOR
 - Working principles
 - Chopper optimization
 - Results and analysis
- SUMMARY AND CONCLUSIONS

ACKNOWLEDGEMENTS

• NES TEAM MEMBER

- Ph.D. candidates: M. Yuan, L. Wu, Zh. Chen, R. Hua
- Ph.D. students: J. Chen, M. Z. Zhang
- M.S students: D. Ventura, H. Liu, M. Masoumi, D. Deland
- Alumni: W. Deng (Texas A&M), M. Chen (Harvard), G. Hu &
 B. Ferber (Stanford), A. Karnati (Berkeley), A. Ke (Caltech)

CURRENT SPONSORS

- o ONR N000141410230 (2014-2018)
- o DOE-AR0000531 (2015 -2018)
- o DOE-AR0000945 (2018–2021)
- NSF CAREER (2018 2023)

Res + Comm Buildings = 13 Quads of Energy

HVAC + LIGHTING = 50%

EXISTING OCCUPANCY SENSORS

Stony Brook University

*

Sensor type	Stationary occupants	Cost	Accuracy	Other comments
PIR sensor	No	Low	Low	Motion sensor
Camera	Yes	Medium	High	Does not work in dark; Privacy invasion
Ultrasonic	Yes	Medium	Low	Needs several nodes; Complicated installation
Radio frequency (WIFI)	Yes	Medium	Medium	Need several nodes; complicated installation
Thermopile	Yes	Medium	High	Narrow Field Of View (FOV)

EXISTING PYROELECTRIC INFRARED (PIR) SENSORS

Benefits

- Passive sensing
- Low cost
- Large Range (12 m)
- Wide FOV (120° x120°)
- Can not detect stationary objects

Detectable

Not Detectable

How to address this?

Stony Brook University

7/10

INTRODUCING A VIBRATING CHOPPER TO PIR SENSORS

- Use a single-phase rotary vibrating chopper to create varying infrared radiation
- currentless: rotor at cogging point: reluctant force (air)

pulse: rotates (190mW)

Stony Brook University * Wu, Wang, 2018, Appl. Phys. Lett. In Submission.

EXTENDED FUNCTIONALITY: ACTIVITY TRACKING

- Phase of a peak-peak signal corresponds to zone
- Duty cycle: facing direction

* Stony Brook University * Wu, Wang, 2018, Appl. Phys. Lett. In Review

ACTIVITY TRACKING SENSOR: ARGUS

ACTIVITY TRACKING SENSOR: ARGUS

RMSE: 19 cm

Stony Brook University * Chen, Wang, 2018, IEEE Sensors J. In Review

QUESTIONS?

