

Leveraging Open-Source Tools to Advance Industry Capabilities: OpenDSS

Jeff Smith, Senior Program Manager Distribution Operations, Planning, and Studies EPRI jsmith@epri.com

Advanced Energy Conference

March 28, 2018

New York City, NY

Landscape – The Future Integrated Grid

Power System that is Highly Flexible, Resilient and Connected and Optimizes Energy Resources

Integrating New Technologies and Advanced Resources

- Grid-edge control
- Automation
- *PV*
- Storage
- Advanced metering
- Demand response
- Customer choice
- Adv Communications

Advanced Distribution Operations

- Advanced Applications
 - Volt/var optimization
 - Fault location, isolation, and restoration (FLISR)
 - Unbalanced power flow with distributed controls
 - Optimal network management
 - Contingency analysis
 - Operator training
 - Predictive failure
- Enabling
 - Effective integration of distributed resources, automation and control, and improved situational awareness
 - Enhanced system operation and automation technologies, processes, and work rules that incorporate new technologies and resource alternatives to improve safety, efficiency, and reliability
 - Integration and coordination of DSP and ISO processes and priorities

Distribution Management System Diagram

				all	ce			וקי				ຍ			501	r In		reie
Future					DMS	Adv	ance	d Ap	plica	tion	S				DMS GUI			
Market Dispatch Technical Dispatch	Training Simulator	Outage Management	DA / FLISR	/olt/VAR Optimization	Fault Location	Optimal Network	Switch Order Mgmt	Restoration Switching	Load Shedding	Demand Response	Dynamic Ratings	Predictive Failure	Contingency Analysis	Short Term Forecast	Visualization	Controls	Clearance / Tagging	Alarming / Notification

Core DMS Functions

Distribution System State Estimator Unbalanced On-Line Power Flow Historian - Real Time Data and IED Event Records Distribution System "As Operated" Model – Managed by OMS Distribution System "As Designed" Model – GIS is the "gold standard"

I/O, Data, and Control Interface

MDMS		DSC	ADA	DERMS					
AMI	Subs	DA	VVO	Sensors	Storage	DER	DR		

Advanced Distribution Planning

- Advanced Capabilities
 - Probabilistic planning
 - Load and DER forecasting
 - DER/customer choice modeling
 - Hosting capacity assessment
 - DER Interconnection screening
 - Non-wires solution assessments
 - DA/DMS simulation
 - Automated scenario/mitigation analysis

Enabling

- Effective integration of distributed resources, new automation and control, and facilitation of new domain interactions
- Informed system design and investment decisions that consider new technologies and resource alternatives
- Safe, reliable, and efficient system designs given rapidly changing system conditions and uncertainty
- Efficient and timely planning assessments and decisions

Integrated Transmission and Distribution Operations and Planning

Advanced Distribution System Analysis Platform Open-Source Distribution System Simulator (OpenDSS)

New Technologies

Planning

Operations

Integrated Transmission and Distribution Analysis

OpenDSS – Brief Overview

- Open source of EPRI's Distribution System Simulator
 - Originally developed in 1997 for DG interconnection and planning
 - Open-sourced in 2008
- Designed from the beginning to capture
 - Time-specific impacts and
 - Location-specific impacts
- Unique application capabilities
 - Operations and planning
 - Integration into other simulation toolsets/environments
 - Co-simulation (power and communications)

Core Solution Capability Full, unbalanced 3P power flow Quasi-Static time-series analysis (QSTS) Linear and non-linear analysis Arbitrary n-phase circuit analysis Harmonics analysis Stray voltage/current analysis Fault analysis **DER Models** Smart inverters (Phase I, II, and III functions) Storage models with controllers PV system models Wind system models Demand response Microgrid modeling **DER Short-circuit models Advanced Control Systems** Coordinated and integrated volt/var control **DERMS** control Full regulation control for LTC's, line regs, cap banks **High-Performance Computing Capabilities** Parallel processing Multithreading circuit processing Multi-core management Misc Both radial feeders and meshed networks Transmission systems **Real-Time Simulation**

RESEARCH INSTITUTE