01111000
 01101001
 01110111
 11100011
 10000011
 11000001
 11000001

 10011111
 11110101
 00011000
 11101011
 11001011
 11010111
 01100001

 10011110
 11000100
 00011000
 00000010
 10011010
 00000011
 11000001

 1010000
 01011011
 01110110
 11100101
 000001101
 1110110

 1011000
 0101111
 01010010
 01010010
 01000101
 11001001

 1011000
 11001111
 00101010
 01010010
 01001001
 11001001
 11111010

 1110100
 110010111
 00101010
 01100100
 0100001
 11001011
 0110100

 1110100
 11001011
 00100101
 10010101
 1000001
 01000110

 11000111
 100000111
 01001001
 00100001
 01100000
 11010000

 1111010
 00010101
 10001011
 1000100
 01100000
 11010000

 10000111
 10100101
 10001001
 00100000
 11001000
 11000000
 1100000

 10100001
 00000110
 10001011
 1000000

 $10\ 00010$

1 100 111100

10110010 00101001 10101110 100010

11010010 01110001 110011000

Next Generation Sensing

Proprietary - Company Confidential ©2017 Micatu Inc. Information and equipment described herein may require US Government authorization for export purposes. Diversion contrary to US law is prohibited.

010 00001100 00110100

PROBLEMS UTILITIES ARE FACING

What are the opportunities for utilities?

Problem(s)

Utilities are facing a fundamental shift towards renewable energy sources, a changing business model & aging infrastructure.

State legislation is driving US utility industry change, mandating renewable and distributed generation % of total electric generation

Utilities have started to reach the saturation point, i.e. They have to do something to meet demands.

Opportunities

20 years, \$46B to \$117B could be saved in the avoided cost of construction of power plants, transmission lines and substations

Increasing energy efficiency, renewable energy and distributed generation could save an estimated \$36 billion annually by 2025

Distributed generation can significantly reduce transmission congestion costs, currently estimated at \$4.8 billion annually

ALL THESE PROBLEMS REQUIRES ADVANCES IN UTILITY OPERATIONAL AWARENESS

 $\langle \rangle \rangle$

WHERE ARE UTILITIES HEADING

Fundamental change in the grid topology.

 $\langle \rangle \rangle$

HOW IS THE MODEL CHANGING?

What is driving the utilities to invest?

 $\langle \langle \rangle \rangle$

WHAT SOLUTIONS ARE UTILITIES SEEKING?

Where are sensing solutions needed?

Challenge	Required Solutions	Required Sensing			
Integrating Renewable Energy Sources	High Fidelity, Low Cost Monitoring of DER Interconnections	Voltage	Current		
IT/OT Integration, AI & IoT	Requires Digitization of the distribution & transmission grids	Voltage	Current	Temperature	Vibration
Equipment Monitoring	Retrofittable sensing solutions	Voltage	Current	Temperature	Vibration
Operations Security	Realtime monitoring of substations and transformer assists	Voltage	Current	Temperature	Vibration
Volts/VAR Implementation	Sensing with proven accuracy and precision	Voltage	Current		
Data Overload	At the "Grid Edge" AI & Analytics	Advanced "Data Collector" & RTU's			

OPTICAL SENSING

The Operating Principle

 $\langle \rangle \rangle$

OPTICAL SENSING

Sensing Solutions Overview

m410 Modular Optical Sensor Platform

Aboveground Voltage & Current Sensors

Underground Voltage & Current Sensors

Temperature & Vibration Sensors

GRIDVIEW[™] SYSTEM OVERVIEW

Typical Distribution System Installation

SENSING VALUE

What are key performance metrics?

Customer Needs	Required Sensing
High Fidelity and Low Cost Monitoring	 70% to 80% Reduction of installation costs 30% Lower costs of ownership Highest Performance available in the market Standardization of all sensing applicatoins
Digitization of the distribution & transmission grids, Retrofittable sensing solution	 Conforms to IEC 61850 Data Communications Standards Retrofittable and backwards compatible Only Self-Provisional Sensor System
Realtime monitoring of substations and transformer assists	 Harmonic resolution Electrical isolation Tamper evident Higher accuracy and dynamic range enable higher level of analysis
Sensing with proven accuracy and precision	 Third Party Certification of Performance Meets all requirements for accuracy, dynamic range, precision
"Grid-Edge" AI & Analytics	Software enabled AI & Analytics ready solutionLicensable features

 $\langle \langle \rangle \rangle$

Facilitating Simplified DER Interconnection

sastineation, be	enchmarking	, , , , , , , , , , , , , , , , , , ,	
	DER Size for Monitoring	DER Size For Control	
FERC NOPR	Strong references to M&C for DER standalone or in aggregation at 100 kW or greater	Strong references to M&C for DER standalone or in aggregation at 100 kW or greater	
Tucson Electric Power	Above 300 kW: RTU (SCADA) 50 kW – 300 kW: RTU or Interval (Situational) Requires a second meter for all systems		
Toronto Hydro	Required at 50 kW and above through SCADA	Required at 50 kW and above through SCADA	
San Diego Gas & Electric	Required at 30 kW and above; below 1 MW 5/15 min interval data; above 1 MW SCADA	30 kW- 1 MW situational through SCADA; above 1 MW required through SCADA	
Xcel (Minnesota)	Required at 40 kW to 250 kW for remote dual meter (interval data) Required at 250 kW and above for monitoring through SCADA	May require an RTU for systems at 250 kW and above	
Detroit Edison (DTE)	Required at 150 kW and above	May be required at 150 kW and above Shall be required at 550 kW and above	
Eversource – Western Mass	Interval required at 60 kW and above; SCADA required at 500 kW and above	Shall be required at 500 kW and above	

On-site Test Data Results Example

Flexible DER Monitoring Solutions

Upgrade Tie Reclosers & Enable Power Quality Measurement

R&D Sensor Testing – Why do we need this?

Crange & Rockland

Has 3 External Voltage, 3 Internal Voltage and 3 internal Current sensors

Very "busy" primary connections, even with 6 internal sensors

Performance/accuracy issues of many sensors

Many Tie Reclosers affected in production now (17 in Eastern alone)

3

Lindsey Voltage Sensors, NOVA Frame Mounted R&D Sensor Testing – Project Concept

IMPORTANT: R&D doesn't determine the application specific performance level required;

Simply to thoroughly test and document the performance

Next Generation Sensor Desired Attributes:

- Line suspended, no direct device/pole mounting (line post configuration for certain applications possible)
- Voltage and Current wave forms at 0-10VAC for pole meter connection. (local automation, SCADA use)
- Not fail over test period (will monitor for years), target +/-1% accuracy of Full Scale, but not a disqualifier for Distribution Automation use
- Sensor has factory calibration physically imbedded in attached chip; loads when plugged in
- Other DSIP driven programs to dictate required accuracy of Volts, Amps, Watts, VARs

4

 $(\langle \rangle) (\rangle)$

Orange & Rockland

High Reliability Sensor Replacements

Underground Sensing & Groundless Sensing Solution

HOW DO WE WORK TOGETHER?

CONTACT US: 315 Daniel Zenker 202 IST Center, Horseheads, NY 14845 +888-715-8836 marketing@micatu.com

www.micatu.com

Micatu GridView Rg235 Sensor