

Advanced Combustion Engines for Power Generation and Propulsion Systems

Sotirios Mamalis

Assistant Professor Department of Mechanical Engineering Stony Brook University

Advanced Energy Conference, March 27, 2018

Outline

- What are advanced combustion engines?
- Discussion of two active research projects
 - Natural Gas HCCI Free Piston Linear Alternator: \$2.7M for 3 years, ARPA-E, collaboration with Aerodyne Research, Inc.
 - Hybrid SOFC-ICE System, \$2.325M for 2 years, Phase I, ARPA-E, collaboration with Nexceris LLC, Czero Engineering, and BNL
- Future Direction

Advanced Combustion Engines

- Conventional engine concepts: Spark-Ignition and Diesel combustion
- Advanced or Low Temperature Combustion:
 - Combine benefits of SI and Diesel for high efficiency and low emissions
 - Many different concepts proposed, all with the same fundamental characteristics
 - Currently topics of active research for power generation and propulsion systems

Research Project 1: ARPA-E MICE

- Free-piston engine with natural gas HCCI combustion to achieve high thermal efficiency and low NOx, no soot emissions.
- Utilize spring for energy storage, high energy density, compact size, low weight, low cost, and good controllability.
- Employ a permanent magnet alternator for low active mass.
- Operate at fixed cycle frequency and optimize for low noise and vibration.
- Develop active piston lubrication system for high durability, and low VOCs from oil consumption.

Images courtesy of Aerodyne Research Inc.

MICE CFD Modeling

- CFD work focused on understanding the gas exchange and combustion processes of this free piston, 2-stroke engine
- Results were used to guide the design of the cylinder, airbox, and ports for prototype fabrication, as well as to guide experimental testing
- CFD simulations performed using RANS and LES with detailed chemistry over full engine cycles

MICE System Level Modeling

- System model includes: a thermodynamic submodel, a fluid dynamics submodel, a piston dynamics submodel
- Built using established correlations from the literature and validated against experimental data

Stony Brook

University

Results from System Modeling

- Piston motion prediction based on dynamics

6

Energy Breakdown [%]

0

Compression

MICE Experimental Testing

- Alpha prototype currently under testing to measure friction, pumping work, and subsequently perform SI and HCCI combustion experiments with natural gas
- Improved beta prototype to be delivered at the end of the project

Research Project 2: Hybrid SOFC-ICE

- Goal: Integrate SOFC with internal combustion engine to create a system that can achieve higher electric power conversion efficiency than current technology (70%+)
- How? Start with SOFC as the base and use the anode tailgas as fuel for an engine that can produce additional power
- The engine supplements the system power and also serves as *balance-of-plant* for the stack

METRIC	SOFC	ICE Generators	Microturbine Generators	Hybrid SOFC-ICE
Power	1~ 10 kW	100 ~ 1000 kW	50 ~ 300 kW	10 ~ 200 kW
Fuel	Natural gas, JP8	Wide range	Wide range	Natural gas
Net AC Efficiency	50-60%	35-45%	30-40%	≥ 70%
Manufacturing cost	~\$6.00/W	~\$0.50/W	~\$1.00/W	≤ \$0.90/W
Maintenance cost	≤ \$0.01/kWh	~\$0.05/kWh	~\$0.05/kWh	≤ \$0.02/kWh

- Competing and emerging technologies:
 - SOFC
 - ICE Generators
 - Microturbines
- Key: use the engine as a means to reduce the cost of the hybrid system
- Previous efforts have tried to hybridize SOFC with gas turbines or microturbines at higher power output levels

Thank you!

