

Bridging the Gap Between Legacy Grid and Tomorrow's PV, Storage, and Microgrids: Feasibility and Design Considerations

Dr. Arindam Maitra

Technical Executive Electric Power Research Institute

Advanced Energy Conference March 27th 2018

How The Grid Will Evolve

Grid Defection

Loosely connected Islands of Self Generation Distributed Resource Connected to Grid but not Integrated Connection Rules Require DER to Provide Grid Voltage/VAR and Fault Ride-Through

Guided Deployment of DER Integrated with Distribution System Operation A Fully Integrated Grid with Market/TSO/ DSO/DER Coordinated Planning & Operation

Policy, Interoperability Standards, Market & Interconnection Rules and Technology will Drive Transformation

Power System Transformation

Question is not "if" or "when" the change will come...but rather how fast

Technology Evolution and Impact on Capacity and Energy

Integrated Grid Enables a Transition to Cleaner Electricity and Enables Integration of Energy

Transmission

Flexible Resources

Smart Distribution

DER – Today vs Tomorrow

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Key Elements within the Integrated Grid

Integrated Planning and Operations

- Integrated Models
- Advanced Simulation
- Real Time Systems
- Distributed Controls and Demand Response
- Risk-Based
- Forecasting and Analytics
- Visualization

Advanced Asset Management

- Sensors and Communications
- Advanced Analytics
- Maintenance and Diagnostics
- Reliability and Resiliency
- Visualization and Decision Support

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Storage Anywhere

Almost limitless permutations of storage and other resources are possible

Energy Storage Can Serve Multiple Uses

- Capacity Resource: Peaker replacement or non-wires alternative
- Flexibility Resource: System ramping, renewable variability and uncertainty
- Reliability / Resiliency Resource: Electricity inventory for reserves
- Voltage / Power Quality Resource: Power conditioning system capabilities

Using Cleaner Energy – A Customer's Perspective

Electrification and efficiency are steps to reduced emissions you can take today

Example of Technology Demonstration DER as a Load Shaping Tool

Smart Appliances

Electric Vehicles

What can impact of DER be on the overall load shape?

ELECTRIC POWER RESEARCH INSTITUTE

Source:

ENEL – Measured

Data from Southern Italy

Example of Technology Demonstration *Grid Interactive Microgrids*

Key Parameters Impacting Microgrid Cost

A variety of factors, many interconnected, impact the overall design and cost of a microgrid. Certain factors are considered fixed inputs (i.e. assumptions) while other factors are varied to in order to evaluate the sensitivity of their impact on overall cost.

The Integrated Energy Network and Efficient Electrification Enables:"

Smart City ğ 3) Tansit WiFi 0.0 G Traffic Home (P) (1) "Advanced Energy Cities" Parking Lighting

And

"Smart Cities"

DOE SHINES Project: Beneficial Integration of Solar, Storage, and Load Management

Case Western Reserve University (CWRU) Cleveland, OH

PV-50kW, ES-50kW/200kWh

- Making the grid ready for seamless integration of solar plus storage to support customer choice
 - while optimizing the electric system: technically and economically
- Making solar plus storage more operationally integrated
 - in a cost competitive manner
- Improving the value proposition of solar plus storage and other distributed energy resources
 - extending benefits beyond customer premises

Residential Demo Site, Pensacola, FL

PV-10kW, ES-14kW/40kWh

CUNY, Queens Flushing, NY PV-50kW, ES-100kW/200kWh

Together...Shaping the Future of Energy

