

Software for Data-Driven Battery Engineering

Eli Leland

Co-Founder & Chief Product Officer

AEC 2018

New York, NY

4/2/2018

2 | Company Snapshot

Voltaiq is a Battery Intelligence software company with the mission to bring your battery technology to market faster

- Software company founded in 2012 by battery engineers and data scientists
- Customers include Fortune 500, leading universities, cutting-edge startups
- Applications across consumer electronics, medical, EVs, and energy storage
- Offices in Brooklyn, NY, Berkeley, CA, and opening soon in Europe

3 | ARPA-E Roots

voltaiq

We started Voltaiq to solve our own problems leading two ARPA-E research projects at the CUNY Energy Institute

Grid-scale battery and printed capacitor R&D projects

Tal Z. Sholklapper, PhD ARPA-E GRIDS Flow-Assisted Alkaline Battery

Eli S. Leland, PhD ARPA-E ADEPT: Metacapacitors for Power Conversion

Thousands of prototypes to test

Huge data analysis challenges

Our group developed some rudimentary software tools to enable basic data analysis in a web browser

Huge data analysis challenges

A simpler, more sane way to analyze data

5 | First Customer

voltaiq

Early commercial interest led to the formation of Subway Labs, and a proof-of-concept deployment of our first product, *IV Spy*

6 | SBIR Funding

Buoyed by this early success, we set about building a company — SBIR support from the DOE and NSF was vital early on

We read the books

Called everyone we knew

And secured SBIR funding

(and convinced ourselves there was a larger opportunity)

Office of Science ASCR

voltaiq

Phase 1 & 2 \$1.15m total

Industrial Innovation and Partnerships

Phase 1 & 1b \$200k total

Along the way be came up with a better name

Voltaiq

voltaiq

Companies across industries are making high-stakes engineering decisions around what batteries to use and how to use them

Batteries power products that are more complex and expensive than ever before

Batteries must be safe

They must be reliable for years of use

They must be integrated into large systems

Poor choices can have disastrous impact on brand equity and balance sheet

Samsung Galaxy Note 7 explosions

HP's 50,000 laptop recall over fire risk

voltaiq

Longer application lifetimes are presenting new challenges

High-level statistics such as battery capacity don't tell you enough

Fig. 6. Different aging trends from 48 equal cells under same aging conditions and profiles.

Fig. 7. Development of the position of the 48 cells within the sorted capacity at four cycle lifetimes.

Minimal correlation between capacity early and late in the life cycle

voltaiq

Developing safe and effective battery products has a time problem Testing and analysis is time consuming and inefficient

Data outputs-too many files, too many formats

Makeshift analysis tools

Data isn't shared across the industry value chain

voltaiq

Voltaiq gets battery-powered products to market faster, lowers engineering costs, and decreases risk

Typical battery analysis workflow

voltaiq workflow

Select current and historic data to compare, from a single database

🗢 🗢 🖉 Woltalq

Analyze in browser, share by links

Boost equipment utilization 30% — Save time equal to multiple FTEs

13 | Solution

Voltaiq aggregates data across sources, harmonizes that data on a cloud platform, and provides in-depth performance analytics

Battery cyclers and systems in the field generate data

voltaiq

Data is automatically centralized and harmonized in Voltaiq

Quickly find, visualize, compare, and analyze performance 14 | Suite

voltaiq

Voltaiq Battery Intelligence software engineering modules

Voltaiq Core

Rapid interactive data visualization, powerful search, seamless sharing and collaboration with colleagures, near and far

Powerful **custom analysis** of your entire dataset: Statistical studies, pass/fail **automation**, specialty analysis (HPPC, capacitor ESR), production **statistics**

Voltaiq Analytics*

Record and **track** battery **materials**, processing, test conditions, changing **dimensions**, and **observations**, and analyze values alongside performance data

Voltaiq Notebook*

¢ n

mm ‡

mm ¢

Cancel Apply Save

\$ Height

g \$ 65

g \$ 65

Ah ¢

mΩ¢

52.49

52,49

Build Informa

Manufacture

Rated Capacity

2016-05-23

Cathode NCM \$

2014-06-15

1.22

C 3% SI \$

Targray PF

Voltaiq Reports*

Automated, fully customizable reports emailed to your inbox on a scheduled or event-driven basis; The Voltaiq "Virtual Technician"

* Optional

15 | Analytics

Voltaiq helps you dig deeper to unlock insights hidden in your battery data

Differential capacity analysis

Advanced cycling analysis

16 | Analytics

Our analytics derive dozens of additional time-series and per-cycle parameters from all raw data streams

Harmonized time-series values	Aggregated per-cycle values		
Test Time	Cycle Number	Minimum Potential	Cycle Start Time
Timestamp	Charge Capacity	Maximum Potential	Cycle End Time
Datapoint Number	Discharge Capacity	Initial Charge Potential	Cycle Start Timestamp
Datapoint Ordinal	Minimum Test Net Capacity	Final Charge Potential	Cycle End Timestamp
Cycle Number	Maximum Test Net Capacity	Initial Discharge Potential	CV Charge Time
Current	Maximum Cumulative Capacity	Final Discharge Potential	Other Charge Time
Potential	Cumulative Charge Capacity	Open Circuit Potential - Charge	Total Charge Time
Step Index	Cumulative Discharge Capacity	Open Circuit Potential - Discharge	CV Discharge Time
Step Time	Cycle Net Capacity	Relaxation Potential - Charge	Other Discharge Time
Charge Capacity	CV Charge Capacity	Relaxation Potential - Discharge	Total Discharge Time
Discharge Capacity	Other Charge Capacity	Mean Charge Potential (time-weighted)	Rest Time
Charge Energy	Charge Energy	Mean Discharge Potential (time-weighted)	Other Cycle Time
Discharge Energy	Discharge Energy	Mean Charge Potential (capacity-weighted)	Total Cycle Time
	Minimum Test Net Energy	Mean Discharge Potential (capacity-	Maximum Charge Power
	Maximum Test Net Energy	weighted)	Minimum Charge Power
Derived time-series values	Maximum Cumulative Energy	Minimum Charge Current	Maximum Discharge Power
	Cumulative Charge Energy	Maximum Charge Current	Minimum Discharge Power
Power	Cumulative Discharge Energy	Mean Charge Current (time-weighted)	Mean Charge Power (time-weighted)
Differential voltage dV/dt	Cycle Net Energy	Minimum Discharge Current	Mean Discharge Power (time-weighted)
Differential capacity dQ/dV	CV Charge Energy	Maximum Discharge Current	Internal Resistance Start of Charge
Current Cycle Net Capacity	Other Charge Energy	Mean Discharge Current (time-weighted)	Internal Resistance End of Charge
Current Cycle Net Energy	Coulombic Efficiency		Internal Resistance Start of Discharge
Test Net Capacity	Energy Efficiency		Internal Resistance End of Discharge
Test Net Energy	Voltage Efficiency		
Test Cumulative Capacity			
Test Cumulative Energy			

Voltaiq includes predictive analytics built in to spot degradation trends sooner

18 | Analytics

```
voltaiq
```

We are developing algorithms that use advanced features extracted from time-series data to provide even greater predictive capability

*Peak position indicates internal resistance; peak height indicates electrode capacity

19 | Analytics

```
voltaiq
```

We are developing algorithms that use advanced features extracted from time-series data to provide even greater predictive capability

Over time, our data asset and predictive analytics will drive value across the battery supply chain and life cycle

- Predict failure without testing to end-of-life
- Optimize device operation
- Minimize product risks

21 | Lifecycle

Voltaiq is a full lifecycle solution for ensuring high product quality and traceability from materials through end of life

- VENDOR
- Was the battery made well with the right materials?
- Is battery quality consistent?

OEM

- Was the battery integrated properly?
- Is the system safe?
- What is the expected lifetime?

- USER
- Was the battery used properly?
- Is my warranty valid?
- Did control algorithms maximize value?

2ND LIFE

voltaiq

- How much value can the battery deliver?
- What is the best application for this battery?

Voltaiq Battery Intelligence Platform

CONTACT

Eli S. Leland Co-Founder & CPO eli@voltaiq.com +1 (510) 851-0494

