# **Commercialization of SulfCrete.:**

An Alternative Low-Carbon Concrete

Paul Kalb Advanced Energy Conference, **DOE R&D Session** March 27, 2018

BRODKHAVEN

Environment, Biology, Nuclear Science, AL LABORATORY Nonproliferation Directorate



# Background

- Sulfur is a by-product material generated from the production of oil and gas and the cleanup of coal-fired power plant emission gases
- Millions of tons/year are produced throughout the world supply exceeds demand and large volumes of by-product sulfur are in storage (>21 M tons)



IERGY

BROOKHAVEN NAL LABORATORY Nonproliferation Directorate

Environment, Biology, Nuclear Science,

# **By-products to Co-products**

- Excess by-product sulfur can be recycled into beneficial concrete co-products (e.g., pipes, aggregate for road construction, paving stones, railroad ties) for improved sustainable development
- Potential for displacement of conventional hydraulic cement in many applications; large potential markets







BROOKHAVEN NAL LABORATORY Nonproliferation Directorate

Environment, Biology, Nuclear Science,

### **Sulfur Polymer Concrete Products**

10000



Recycling industrial by-products to produce new commercial co-products

#### **Sulfur: the Green Concrete**

 Large amounts of CO<sub>2</sub> are generated in the production of conventional hydraulic cement as limestone is converted to calcium oxide using high temperature fossil fuel kilns:



Environment, Biology, Nuclear Science,

NAL LABORATORY Nonproliferation Directorate

The cement industry accounts for 5 - 7% of all the anthropogenic production of CO<sub>2</sub> annually

CaO(s)

5



 $CaCO_3(s)$ 

Displacement of conventional hydraulic cement with sulfur-based thermoplastic binders (SPC) can reduce concrete industry carbon footprint

BROOKHAVEN

# **Sulfur Polymer**

- Elemental sulfur is a thermoplastic that undergoes a solid phase change on cooling which results in changes in density and mechanical instabilities
- Sulfur polymer was developed by researchers in U.S., Canada, and Europe to suppress solid phase change and improve performance for use as an alternative construction material
- Currently, production of conventional sulfur polymer is limited by the cost and availability of dicyclopentadiene (DCPD) and oligomer additives used for processing

# **SulfCrete**<sub>®</sub> Formulation

- Conventional SPC is not cost-competitive and has not gained a significant market share
- BNL and collaborators developed an innovative and cost-effective alternative stabilized sulfur binder known as SulfCrete.
- (5) U.S. and international patents issued
- Replaces expensive organic additives (DCPD) with inexpensive fossil energy byproducts and high surface area fillers (refinery distillates a



area fillers (refinery distillates and coal fired fly ash)

# SulfCrete. Mechanical Strength (MPa)

| SSBAF Mechanical Testing                                                                                                                           | 20°C             | 50°C | 14 day<br>immersion |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|---------------------|
| Average Compressive strength                                                                                                                       | 62.3             | 59.6 | 56.7                |
| Standard Deviation                                                                                                                                 | 3.8              | 4.5  | 1.6                 |
|                                                                                                                                                    |                  |      |                     |
| Average Flexural Strength                                                                                                                          | 8.1              | 8.0  | 10.1                |
| Std Deviation                                                                                                                                      | 1.1              | 2.0  | 1.1                 |
| Typical conventional SPC:<br>Compressive strength<br>Flexural strength<br>Sulfur Polymer Cement Handbook, The Sulphur Institute                    | 27.6<br>5.2      |      |                     |
| Typical hydraulic cement concrete<br>Compressive strength<br>Flexural strength<br>http://www.engineeringtoolbox.com/concrete-properties-d_1223.htt | 20 – 40<br>3 – 5 |      |                     |

BROOKHAVEN Environment, Biology, Nuclear Science, NATIONAL LABORATORY Nonproliferation Directorate

# SulfCrete Technology Status

- Limited lab-scale R&D and scale-up feasibility by BNL resulted in successful formulation with favorable mechanical properties
- Formulation optimization needed to identify lowest cost and best performance
- Engineering scale-up and demonstration
- Concrete product fabrication and testing







BROOKHAVEN

Environment, Biology, Nuclear Science, AL LABORATORY Nonproliferation Directorate

### **SulfCrete** Commercial Status

- Green SulfCrete, Inc. and BNL negotiated an exclusive license agreement
- Green SulfCrete is seeking business opportunities, capitalization and industrial partnerships
- Partnership with Roman Stone Construction, Inc.
- BNL and SulfCrete team won:
  - NSF Phase I grant for scale-up feasibility (complete)
  - DOE TCF grant for scale-up engineering and demonstration (awarded, pending contracts)
  - NYSERDA grant for scale-up product (awarded, pending contracts)

#### **Green SulfCrete Business Plan**





Environment, Biology, Nuclear Science,

#### **DOE Technology Commercialization Fund**

#### <u>Goals:</u>

- Design, develop, and demonstrate a working pilot-scale SulfCrete<sub>®</sub> production facility
- Fabricate real-world SulfCrete<sub>®</sub> products and test (under leveraged support from NYSERDA)





BROOKHAVEN NATIONAL LABORATORY Nonpro

Environment, Biology, Nuclear Science, Nonproliferation Directorate

#### **DOE Technology Commercialization Fund**

#### <u>Tasks:</u>

- Engineering scale-up; process equipment selection & preliminary testing
- 2) Characterization of materials
- 3) Optimization of formulations and process parameters
- 4) Short-term performance and QA/QC testing
- 5) Demonstration of integrated processing
- 6) Selection of SulfCrete<sub>®</sub> pre-cast products for production
- 7) Fabrication/testing of SulfCrete<sub>®</sub> pre-cast products
- 8) Determine marketing potential and outreach

### **Summary and Conclusions**

- SPC results in lower greenhouse gas emissions: greener alternative than OPC
- Compared with conventional SPC, SulfCrete<sub>®</sub> uses multiple FE by-products to produce cost-effective co-products for a more sustainable world
- DOE TCF and NYSERDA projects will demonstrate pilot-scale viability needed to establish commercial viability