Meeting Peak Demand through Energy Storage

2018 Advanced Energy Conference

March 28, 2018

FLUENCE A Siemens and AES Company

Fluence is the global leader in energy storage with nearly 500 MW in 15 countries

Fluence brings unmatched experience at scale from the partner you can trust

EXPERIENCE

10+ years of experience in energy storage from two proven industry pioneers

- World's leading storage provider
- Deployed or been awarded 56 projects, in 15 countries, 486 MW

SCALE

Complete technology and service offerings delivered worldwide

- Proven technology platforms that address full spectrum of applications
- Delivery & integration in 160 countries
- Comprehensive services including financing

THE RIGHT PARTNER

Deep understanding of modern power markets, customer needs, and local market challenges

- Collaborate with customers to solve their energy challenges
- Avoid pitfalls of inexperienced packagers and integrators
- Strong financial backing and industry staying power

Created and backed by two industry powerhouses

Unique capabilities vs. traditional resources

ALWAYS ON

HIGHLY RELIABLE

UNIQUELY FLEXIBLE

Parallel
Array
For High
Availability

Storage is "always on" to provide multiple services

Storage provides up to 4x the effective resource of a thermal peaker

Storage provides better system flexibility at lower cost than gas peakers

Example: Public Service New Mexico 2017 IRP Preliminary Reliability Analysis

	Renewable Penetration	LF Target	Curtailment	Curtail- ment	LOLE _{CAP}	LOLE	Producti onCosts
					Events Per	Events Per	
	% of Load	% of Load	%	MWh	Year	Year	M\$
Base Case 40% RPS (66.7% Wind)	40.6%	13%	9.4%	541,689	0.10	0.48	543.0
Base Case 40% RPS (66.7% Wind)	40.6%	15%	10.0%	579,932	0.10	0.28	549.7
Base Case 40% RPS (66.7% Wind) and 2 LM6000 (80 MW)	40.6%	13%	9.2%	534,093	0.04	0.50	539.0
Base Case 40% RPS (66.7% Wind) and 100 MW 2 hour storage	40.6%	13%	8.9%	514,306	0.04	0.31	536.7
Base Case 40% RPS (66.7% Wind) and 100 MW 4 hour storage	40.6%	13%	8.6%	495,383	0.03	0.27	535.7
Base Case 40% RPS (66.7% Wind) and 100 MW 6 hour storage	40.6%	13%	8.4%	483,445	0.02	0.27	535.5

Higher reliability and lower cost with energy storage vs. flexible thermal resources (e.g., aero-derivatives)

The peak need changes as renewable penetration increases

7

The value of storage also increases as renewable penetration increases

Source: Denholm, P. and Margolis, R., "The Potential for Energy Storage to Provide Peaking Capacity in California under increased Penetration of Solar Photovoltaics" (2018)

30 MW of energy storage for San Diego Gas & Electric, California, United States

Largest energy storage project in the western hemisphere Contract to online in 6 months Sited on 1 acre, where a power plant could not be permitted

Generation Enhancement

Long Beach, California, United States 100 MW, 4-hour (400 MWh) AES Alamitos, COD Jan 1, 2021

SERVICES

- Capacity, local reliability
- Peak power/off peak mitigation
- Ancillary services

IMPACT

- Competitive bid vs thermal peaker, cost effective
- Replaces environmental retired units
- Meets flexibility (duck curve)

World's largest contracted energy storage project

Transmission & Distribution Enhancement

Arizona, United States 2 MW / 8MWh Arizona Public Service (APS), Punkin Center (under construction)

SERVICES

- Transmission upgrade deferral
- Peak management

IMPACT

• Power reliability at half the cost of a transmission

APS Buys Energy Storage From AES for Less Than Half the Cost of a Transmission Upgrade

Punkin Center, known for its prominent pumpkin sign, will now also be known for pushing the vanguard of battery storage.

> Sign up for the GTM newsletter. Stay up to date

by Julian Spector August 09, 2017

Photo Credit: lopez1441 / Panoramio

This is not a test

SOLAR

RID EDGE

odcasts

Vehinars

White Paper

V in S

ENERGY STORAG

Utility Arizona Public Service has contracted for a new grid-scale battery -- not to demonstrate the technology, but because it's a lot cheaper than the conventional alternative.

Thank You

Ray Hohenstein | Market Applications Director o: (703) 795-1363 | Ray.Hohenstein@fluenceenergy.com

PT-001-01-EN