



1

# OFFSHORE WIND MEASUREMENT TECHNOLOGY

Advanced Energy Conference | 28 March 2018 | New York, NY | Version 1





UL Introduction Background on Metocean Data Classical Measurement Approach New Measurement Technology

# **UL INTRODUCTION**



#### UL DRIVES TRUST IN RENEWABLES







Country locations of UL renewable energy customers



Years of combined experience in the renewable energy industry



Independent / Owner's Engineer on **450+** wind & solar projects\*

\*since 2012

ADVISED 90% of the wind and solar industry's top PROJECT DEVELOPERS and PLANT OWNERS





# 200,000+ MW

Total renewable energy megawatts (MW) assessed



FORECAST PROVIDER for 60+ GW

of installed renewable energy projects

# **METOCEAN DATA NEEDS**



### BACKGROUND

- High-quality meteorological and ocean (metocean) data are essential to successful offshore wind project initiation and development.
- There is a scarcity of key atmospheric/ocean measurements in US waters that adds both uncertainty and cost to the wind development process.
- Classical approaches to onsite and regional measurement present significant time and cost hurdles.
- New measurement technology application is accelerating schedules and is expected to help lower costs.

# **METOCEAN DATA**

#### Applications

- Project Siting & Permitting
- Energy Projections
- Technology Design & Validation
- Facility Design
- Financing
- Construction
- Operations & Site Safety
- Forecasting



# **PRIMARY DATA PARAMETERS**

#### Atmosphere

- Wind: 1 200m MSL
- Atmosphere State:
  - •
  - Temp., Press., RH, Stability, Transient events
- Climatology
  - Means, Distribution, Extremes
  - Time Series
  - Hurricanes, Icing, Lightning



wake

# **PRIMARY DATA PARAMETERS**

#### Water Surface and Subsurface

- Hydrographic:
  - Wave height, direction, freq., spectra
  - Surface currents and profiles
- Water State:
  - Surface temperature and profile
  - Salinity, chemistry and Ice
- Biologic and Bottom:
  - Marine growth rates
  - Bottom soil types and dynamics



#### **DATA ANALYSIS AND INTEGRATION**



Characterizing these key parameters for long-term energy yield analyses and design basis information requires a robust analytical approach with three primary components.

This presentation focuses on measurements since they commonly represent the most significant investment and schedule driver.

# CLASSICAL MEASUREMENT APPROACH



# **MAST-BASED APPROACH**

- Bottom-fixed, tall mast with multiple monitoring levels and ancillary measurements
- Project-specific and regional installations hub height winds, atmospheric stability and turbulence, ocean conditions
- Benefits:
  - Low uncertainty
  - Large regional coverage



# **MAST-BASED APPROACH**

- Challenges:
  - Very Expensive
  - Long timeline to design, permit and deploy
- Relatively few (<20%) European offshore developers opted to deploy onsite masts
- Efforts to deploy regionally representative masts in the US have not succeeded.
- Almost no developers US or European developers are planning to deploy new offshore masts



# NEW MEASUREMENT TECHNOLOGY



# **FLOATING LIDAR APPROACH**

Is this really new?

Not new in concept; still new in commercial practice

# **ESTABLISHED**

- Technically sound and defensible approach
- Roadmap and Guidance documents in 2013, 2016, 2017
- >15 Project campaigns in Europe, 5 in US; numerous validation campaigns

# NOVEL

- Performance and reliability of new platforms
- Bringing a new project through financing using only floating lidar
- Developing design basis for a project using only a floating lidar

# **FLOATING LIDAR APPROACH**

- One or two accepted profiling lidars deployed on a floating platform with ancillary measurement systems
- Several platforms available, at various stages of commercial maturity
- Benefits:
  - Faster to specify, permit and deploy
  - Less expensive overall, with buy & lease programs



# **FLOATING LIDAR APPROACH**

- Challenges
  - Potentially higher measurement uncertainty & campaign risk
  - Limitations on certain measurement parameters
- Finance and design communities still assessing how data and resulting reports are to be interpreted
- · Validation facilities in the US still limited



### **SUMMARY**

- Offshore wind resource assessment has moved beyond requiring a classical mast-based campaign to allowing floating lidar as the primary measurements.
- Floating lidar systems have demonstrated faster deployment schedules than bottom-fixed structures, and significantly lower costs for the resulting data.
- Well-characterized units have demonstrated operational reliability and excellent measurement precision.
- Uncertainties and acceptance of the floating lidar data are both improving with more public and private campaigns underway.





# THANK YOU

Matthew V. Filippelli Director Offshore Services - North America <u>Matthew.Filippelli@UL.com</u> | +1 518 213 0044 x 1015

