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Introduction

• Microgrid Definition: A group 
of interconnected loads and 
distributed energy resources 
within clearly defined 
electrical boundaries that 
acts as a single controllable 
entity with respect to the 
grid. A microgrid can 
connect and disconnect 
from the grid to enable it to 
operate in both grid-
connected or island-mode.
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Introduction
• MW dc microgrid at CEM in UT-Austin
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Challenge and Opportunity

1. High Penetration DER
• Accommodate high penetration 

intermittent DERs
2. Energy Efficiency

• Reduce operational cost
• Reduce emission

3. Reliability and Resilience 
• Improve system stability
• Reliable fault ride-through and 

protection
• Seamless mode transitions
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Microgrid Control
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MPC-based Microgrid EMS
Objective and Approach

1. Objective
• Enable economic and secure 

steady-state operation
• Seamless integration with local 

controllers

2. Approach
• Look-ahead operational planning: 

Optimize DER schedule for the 
next 12-24 hours

• Online operation: Use ED/OPF to 
determine DER set-points

• Planned outage control

3. HIL Test
• Test the EMS performance
• Test the EMS and fast control 

integration …

Mixed Integer Linear 
Programming (MILP) 

problem
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1. Opal-RT simulator
• Simulated a 13.8 kV 

microgrid (step: 100 us)
• Local controllers 

communicate with Opal-
RT simulators

2. Microgrid EMS
• Improve the economics 

and reliability
• EMS is deployed on 

central controllers
• Dispatch signals are 

transferred to local 
controllers through LAN

MPC-based Microgrid EMS
HIL Test
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MPC-based Microgrid EMS
Preliminary Test Result

Low utility 
price 

High utility price 

Heuristic EMS

EMS optimization results for a day

Central EMS vs Heuristic Control
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1. DC microgrid
• AC generator is interfaced with dc 

grid through converter
• Re-dispatch ac generators for 

efficiency improvement

2. Hybrid approach
• Use ESS to shift energy to operate 

generator at the maximum 
efficiency point

• Develop comprehensive microgrid
EMS to improve the overall system 
efficiency

MPC-based Microgrid EMS
Improvements
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DC Microgrid Protection

AC fault current

DC fault current
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DC distribution system example

DC microgrid protection challenges
1. No fault current zero-crossing
2. Lower line impedance
3. High di/dt
4. Power electrics device can not tolerate 

high fault current
5. Fast capacitor discharge
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Fast DC Fault Localization Algorithm

Inductance-based dc fault location*
1. Estimate fault inductance with local 

measured v(t) and i(t)
2. Use estimated L to locate fault 
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*X. Feng, et.al., “A novel fault location method for dc distribution protection,” 
IEEE Trans. Industrial Applications, vol. 53, no. 3, May-June, 2017.
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DC Protection Control Prototype
Protection strategy design

1. Online moving-window least square method
2. Digital di/dt approximation
3. Algorithm on embedded controller
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DC Microgrid Protection Test
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DC Protection Test Results
*: measured inductance value
□: estimated inductance value
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Case # RF (mΩ) L (µH)

1 33 12.5

2 33 24

3 33 42

4 50 12.5

5 50 24

6 50 42

7 100 12.5

8 100 24

9 100 42

Test Scenarios

*5 tests in each case 

Test Circuit:
• Single dc source 
• One line impedance 

connecting source and load
• Fault is on load side
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Summary
1. The look-ahead EMS approach fully utilizes the most 

recent load and renewable forecast to improve the 
predictive control accuracy

2. The decoupled DER schedule and real-time ED 
approach significantly reduces the computational 
complexity

3. DC prot. is enabling tech. for large-scale deployment of 
dc systems

4. Extra-fast fault location and restoration are keys for grid 
resilience
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Thanks for your attention

Contact information:
Xianyong Feng
Center for Electromechanics
The University of Texas at Austin
Email: x.feng@cem.utexas.edu
Phone: 1-512-232-1623
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